Vol. 34, issue 12, article # 9

Tarasenko V. F. Analysis of the dynamics of atmospheric discharges based on data on cylindrical and spherical streamers. // Optika Atmosfery i Okeana. 2021. V. 34. No. 12. P. . DOI: 10.15372/AOO20211209 [in Russian].
Copy the reference to clipboard

Abstract:

The sequence of appearance of various atmospheric discharges (lightning, elve, and blue jet) shown on video from the International Space Station is analyzed. For comparison, experimental data on the formation of diffuse, corona, and apokampic discharges with participation of cylindrical and spherical streamers are used. It is assumed that the formation of the elve filmed from the space is initiated by extensive discharges in clouds with subsequent formation of lightning closed to the Earth in this area. In this case, the lightning reaches the positively charged upper cloud layer. The dense plasma of the upper part of the lightning initiates the development of a blue jet, consisting of cylindrical streamers of the ionization wave.

Keywords:

atmospheric and laboratory discharges, lightning, elve, blue jet, ionization wave, streamer

References:

1. Neubert T., Chanrion O., Heumesser M., Dimitriadou K., Husbjerg L., Rasmussen I.L., Østgaard N., Reglero V. Observation of the onset of a blue jet into the stratosphere // Nature. 2021. V. 589, N 7842. P. 371–375. DOI: 10.1038/s41586-020-03122-6.
2. Chanrion O., Neubert T., Mogensen A., Yair Y., Stendel M., Singh R., Siingh D. Profuse activity of blue electrical discharges at the tops of thunderstorms // Geophys. Res. Lett. 2017. V. 44. P. 496–503. DOI: 10.1002/2016GL071311.
3. Qiu S., Wang N., Soon W., Lu G., Jia M., Wang X., Xue X., Li T., Dou X. The sporadic sodium layer: A possible tracer for the conjunction between the upper and lower atmospheres // Atmos. Chem. Phys. 2021. V. 21, N 15. P. 11927–11940. DOI: 10.5194/acp-21-11927-2021.
4. Donchenko V.A., Kabanov M.V., Kaul' B.V., Nagorskij P.M., Samohvalov I.V. Elektroopticheskie yavleniya v atmosfere. Tomsk: Izd-vo NTL, 2015. 316 p.
5. URL: https://youtu.be/4VR3yBlKsFM (дата обращения: 00.00.2021).
6. Siingh D., Singh R.P., Kumar S., Dharmaraj T., Singh A.K., Patil M.N., Singh Sh. Lightning and middle atmospheric discharges in the atmosphere // J. Atmos. Sol.-Terr. Phys. 2015. V. 134. P. 78–101. DOI: 10.1016/j.jastp.2015.10.001.
7. URL: https://www.uib.no/en/rg/space/56207/asim-research (дата обращения: 00.00.2021).
8. Tarasenko V.F., Naidis G.V., Beloplotov D.V., Kostyrya I.D., Babaeva N.Y. Formation of wide streamers during a subnanosecond discharge in atmospheric-pressure air // Plasma Phys. Rep. 2018. V. 44, N 8. P. 746–753. DOI: 10.1134/S1063780X18080081.
9. Tarasenko V.F., Kuznetsov V.S., Baksht E.H., Panarin V.A., Skakun V.S., Sosnin E.A. Formirovanie strimerov sharovoj i tsilindricheskoj formy pri koronnom razryade v vozduhe atmosfernogo davleniya // Optika atmosf. i okeana. 2020. V. 33, N 11. P. 897–904. DOI: 10.15372/AOO20201111.
10. Tarasenko V.F., Sosnin E.A., Skakun V.S., Panarin V.A., Trigub M.V., Evtushenko G.S. Dynamics of apokamp-type atmospheric pressure plasma jets initiated in air by a repetitive pulsed discharge // Phys. Plasmas. 2017. V. 24, N 4. P. 043514. DOI: 10.1063/1.4981385.
11. Ebert U., Sentman D.D. Streamers, sprites, leaders, lightning: From micro-to macroscales // J. Phys. D: Appl. Phys. 2008. V. 41, N 23. P. 230301. DOI: 10.1088/0022-3727/41/23/230301.
12. Bazelyan E.M., Rajzer Yu.P. Fizika molnii i molniezashchity. M.: Fizmatlit, 2001. 308 p.
13. Rajzer Yu.P. Fizika gazovogo razryada. M.: Intellekt, 2009. 691 p.
14. Heumesser M., Chanrion O., Neubert T., Christian H.J., Dimitriadou K., Gordillo-Vazquez F.J., Luque A., Pérez-Invernón F.J., Blakeslee R.J., Østgaard N., Reglero V. Spectral observations of optical emissions associated with terrestrial gamma-ray flashes // Geophys. Res. Lett. 2021. V. 48, N 4. P. 2020GL090700. DOI: 10.1029/2020GL090700.
15. Tarasenko V.F., Kuznetsov V.S., Panarin V.A., Skakun V.S., Sosnin E.A., Baksht E.K. Role of streamers in the formation of a corona discharge in a highly no nuniform electric field // JETP Lett. 2019. V. 110, N 1. P. 85–89. DOI: 10.1134/S0021364019130137.
16. Rybka D.V., Andronikov I.V., Evtushenko G.S., Kozyrev A.V., Kozhevnikov V.Yu., Kostyrya I.D., Tarasenko V.F., Trigub M.V., Shut'ko Yu.V. Koronnyj razryad v vozduhe atmosfernogo davleniya pri modulirovannom impul'se napryazheniya dlitel'nost'yu 10 ms // Optika atmosf. i okeana. 2013. V. 26, N 1. P. 85–90; Rybkа D.V., Andronikov I.V., Evtushenko G.S., Kоzyrev А.V., Kozhevnikov V.Yu., Kostyrya I.D., Таrаsenkо V.F., Тrigub М.V., Shut’ko Yu.V. Corona discharge in atmospheric pressure air under a modulated voltage pulse of 10 ms // Atmos. Ocean. Opt. 2013. V. 26, N 5. P. 449–454. DOI: 10.1134/S1024856013050138.
17. Sosnin E.A., Babaeva N.Y., Kozhevnikov V.Y., Kozyrev A.V., Naidis G.V., Panarin V.A., Skakun V.S., Tarasenko V.F. Modeling of transient luminous events in Earth's middle atmosphere with apokamp discharge // Physics-Uspekhi. 2021. V. 64, N 2. P. 191–210. DOI: https://doi.org/10.3367/UFNe.2020.03.038735.