Vol. 34, issue 12, article # 6

Popova S. A., Kozlov V. S., Makarov V. I., Konovalov I. B. Analysis of the UV irradiation effect on the composition and absorption properties of carbon-containing particles according to measurements of smoke from combustion of pine wood in the Big Aerosol Chamber. // Optika Atmosfery i Okeana. 2021. V. 34. No. 12. P. . DOI: 10.15372/AOO20211206 [in Russian].
Copy the reference to clipboard


In a Large aerosol chamber of the IAO SB RAS, experiments were carried out to simulate the smoke aerosol formed as a result of burning pine wood, with different ratios of smoldering and flame combustion modes. The variability of the chemical composition of mixed smokes at the stage of their formation and during 2-day aging under UV irradiation and dark aging was revealed. The dependence of the mass concentrations of light-absorbing carbon-containing particles on the mixing parameter of smoldering and flame combustion modes is considered.


smoke emission, carbon-containing particles, Big Aerosol Chamber, aerosol aging, UV irradiation


  1. Andreae M.O., Merlet P.M. Emission of trace gases and aerosols from biomass burning // Glob. Biogeochem. Cycl. 2001. V. 15, N 4. P. 955–966.
  2. Hamilton D.S., Hantson S., Scott C.E., Kaplan J.O., Pringle K.J., Nieradzik L.P., Rap A., Folberth G.A., Spracklen D.V., Carslaw K.S. Reassessment of pre-industrial fire emissions strongly affects anthropogenic aerosol forcing // Nat. Commun. 2018. V. 9. P. 3182.
  3. Konovalov I.B., Beekmann M., Kuznetsova I.N., Yurova A., Zvyagintsev A.M. Atmospheric impacts of the 2010 Russian wildfires: Integrating modelling and measurements of an extreme air pollution episode in the Moscow region // Atmos. Chem. Phys. 2011. V. 11. P. 10031–10056.
  4. Bond T.C., Doherty S.J., Fahey D.W., Forster P.M., Berntsen T., De Angelo B.J., Flanner M.G., Ghan S., Kärcher B., Koch D., Kinne S., Kondo Y., Quinn P.K., Sarom M.C., Schultz M.G., Schulz M., Venkataraman C., Zhang H., Zhang S., Bellouin N., Guttikunda S.K., Hopke P.K., Jacobson M.Z., Kaiser J.W., Klimont Z.,  Lohmann U., Schwarz J.P., Shindell D., Storelvmo T., Warren S.G., Zender C.S. Bounding the role of black carbon in the climate system: A scientific assessment // J. Geophys. Res. 2013. V. 118. P. 5380–5552.
  5. Andreae M.O., Gelencser A. Black carbon or brown carbon? The nature of light-absorbing carbonaceous aerosols // Atmos. Chem. Phys. 2006. V. 6. P. 3131–3148.
  6. Bond T.C., Bergstrom R.W. Light absorption by carbonaceous particles: An investigative review // Aerosol Sci. Technol. 2006. V. 40. P. 27–67.
  7. Laskin A., Laskin J., Nizkorodov S.A. Chemistry of atmospheric brown carbon // Chem. Rev. 2015. V. 115. P. 4335–4382.
  8. Pokhrel R.P., Beamesderfer E.R., Wagner N.L., Langridge J.M., Lack D.A., Jayarathne T., Stone E.A., Stockwell C.E., Yokelson R.J., Murphy S.M. Relative importance of black carbon, brown carbon, and absorption enhancement from clear coatings in biomass burning emissions // Atmos. Chem. Phys. 2017. V. 17. P. 5063–5078.
  9. Forrister H., Liu J., Scheuer E., Dibb J., Ziemba L., Thornhill K.L., Anderson B., Diskin G., Perring A.E., Schwarz J.P., Campuzano-Jost P., Day D.A., Palm B.B., Jimenez J.L., Nenes A., Weber R.J. Evolution of brown carbonin wildfire plumes // Geophys. Res. Lett. 2015. V. 42. P. 4623–4630.
  10. Konovalov I.B., Golovushkin N.A., Beekmann M., Andreae M.O. Insights into the aging of biomass burning aerosol from satellite observations and 3D atmospheric modeling: Evolution of the aerosol optical properties in Siberian wildfire plumes // Atmos. Chem. Phys. 2021. V. 21. P. 357–392.
  11. Kozlov V.S., Konovalov I.B., Uzhegov V.N., Chernov D.G., Pol’kin Vas.V., Zenkova P.N., Yausheva E.P., Shmargunov V.P., Dubtsov S.N. Dynamics of optical-microphysical characteristics of smokes from Siberian wildfires in the Big Aerosol Chamber at the stages of smoke generation and ageing // Proc. SPIE. 2020. P. 1156046.
  12. Makarov V.I., Koutsenogii K.P., Koutsenogii P.K. Daily and seasonal changes of organic and inorganic carbon content in atmospheric aerosol Novosibirsk region // J. Aerosol Sci. 1999. V. 30. P. S255–S256.
  13. Hecobian A., Zhang X., Zheng M., Frank N., Edgerton E.S., Weber R.J. Water Soluble Organic Aerosol material and the light-absorption characteristics of aqueous extracts measured over the Southeastern United States // Atmos. Chem. Phys. 2010. V. 10. P. 5965–5977.
  14. Lukacs H., Gelencser A., Hammer S., Puzbaum H., Pio C., Legrand M., Kasper-Giebl A., Handler M., Limbeck A., Simpson D., Preunkert S. Seasonal trends and possible sources of brown carbon based on 2-year aerosol measurements at six sites in Europe // J. Geophys. Res. 2007. V. 112. P. D23S18.
  15. Huang R.-J., Yang L., Cao J.-J., Chen Y., Chen Q., Li Y., Duan J., Zhu C., Dai W., Wang K., Lin C., Ni H., Corbin J.C., Wu Y., Zhang R., Tie X., Hoffmann T., O’Dowd C., Dusek U. Brown carbon aerosol in urban Xi’an, Northwest China: The composition and light absorption properties // Environ. Sci. Technol. 2018. V. 52. P. 6825–6833.
  16. Robinson A.L., Donahue N.M., Shrivastava M.K., Weitkamp E.A., Sage A.M., Grieshop A.P., Lane T.E., Pierce J.R., Pandis S.N. Rethinking organic aerosols: Semi-volatile emissions and photochemical aging // Science. 2007. V. 315. P. 1259–1262.
  17. Makarov V.I., Popova S.A., Dubtsov S.N., Plokhotnichenko M.E. Laboratory studies of the smoke emission chemical composition and its transformation under UV irradiation upon smoldering combustion of forest fuels // Abstracts of the 9th Int. Seminar on Flame Structure. Novosibirsk, July, 2017. P. 67.
  18. Zhong M., Jang M. Dynamic light absorption of biomass burning organic carbon photochemically aged under natural sunlight // Atmos. Chem. Phys. 2014. V. 14. P. 1517–1525.