Vol. 34, issue 12, article # 5

Pol'kin V. V., Panchenko M. V., Terpugova S. A. Condensation activity of atmospheric aerosol particles of different size as assessed from the data of an optical counter. // Optika Atmosfery i Okeana. 2021. V. 34. No. 12. P. . DOI: 10.15372/AOO20211205 [in Russian].
Copy the reference to clipboard

Abstract:

The results of experimental study of the condensation activity of particles of different size carried out in October 2020 till June 2021 with use of an AZ-10 optical counter, equipped with a system for artificial humidification of atmospheric aerosol collected, are considered. Hygrograms of the total aerosol scattering coefficient were simultaneously measured with a M903 integral nephelometer. The atmospheric conditions and aerosol characteristics during the measurement period were typical, which was confirmed from the comparison with long-term series of the condensation activity parameter for the scattering coefficient at an angle of 45°.

Keywords:

aerosol, photoelectric counters, condensation activity

References:

1. Georgievskij Yu.S., Rozenberg G.V. Vlazhnost' kak faktor izmenchivosti aerozolya // Izv. AN SSSR. Fiz. atmosf. i okeana. 1973. V. 9, N 2. P 126–138.
2. Kondrat'ev K.Ya. Atmosfernyj aerozol' kak klimatoobrazuyushchij komponent atmosfery. 1. Svojstva aerozolya razlichnyh tipov // Optika atmosf. i okeana. 2004. V. 17, N 1. P. 5–24.
3. Ivlev L.S. Aerozol'noe vozdejstvie na klimaticheskie protsessy // Optika atmosf. i okeana. 2011. V. 24, N 5. P. 392–410.
4. Seinfeld J.H., Pandis S.N. Atmospheric Chemistry and Physics: From Air Pollution to Climate Change, 2nd Edition. New York: Wiley-Interscience, 2006.
5. Jaenicke R. Atmospheric aerosol and global climate // J. Aerosol Sci. 1980. V. 11. P. 577–588.
6. Lohmann U., Feichter J. Global indirect aerosol effects: a review // Atmos. Chem. Phys. 2005. V. 5. P. 715–737.
7. Meszaros A. On the variation of the size distributions of large and giant particles as a function of the relative humidity // Tellus A. 1971. V. 23, N 4–5. P. 436–440.
8. Chen Y., Wild O., Wang Y., Rand L., Teich M., Grossb J., Wangb L., Spindler G., Herrmann H., van Pinxteren D., McFiggans G., Wiedensohler A. The in­fluence of impactor size cut-off shift caused by hygroscopic growth on particulate matter loading and composition measurements // Atmos. Environ. 2018. V. 195. P. 141–148.
9. Neubauer K.R., Johnston M.V., Wexler A.S. Humidity effects on the mass spectra of single aerosol particles // Atmos. Environ. 1998. V. 32, N 14/15. P. 2521–2529.
10. Mikhailov E.F., Vlasenko S.S., Rose D., Poschl U. Mass-based hygroscopicity parameter interaction model and measurement of atmospheric aerosol water uptake // Atmos. Chem. Phys. 2013. V. 13. P. 717–740.
11. 
Rader D.J., McMurry P.H. Application of the Tandem Differential Mobility Analyzer to studies of droplet growth and evaporation // J. Aerosol Sci. 1986. V. 17. P. 771–787.
12. Vlasenko S., Su H., Pöschl U., Andreae M., Mikhai­lov E. Tandem configuration of differential mobility and centrifugal particle mass analysers for investigating aerosol hygroscopic properties // Atmos. Meas. Tech. 2017. V. 10. P. 1269–1280.
13. 
Strapp J.W., Leaitch W.R., Liu P.S.K. Hydrated and dried aerosol size distribution measurements from the particle measuring systems FSSP-300 probe and the deiced PCASP-100X probe // J. Atmos. Ocean. Technol. 1992. V. 9. P. 548–555.
14. Petters M.D., Prenni A.J., Kreidenweis S.M., DeMott P.J. On measuring the critical diameter of cloud condensation nuclei using mobility selected aerosol // Aerosol Sci. Technol. 2007. V. 41. P. 907–913.
15. Rovelli G., Miles R.E.H., Reid J.P., Clegg S.L. Accurate measurements of aerosol hygroscopic growth over a wide range in relative humidity // J. Phys. Chem. 2016. V. A120. P. 4376–4388.
16. 
Chen J., Zhao C., Ma N., Puzhen Y. Aerosol hygroscopicity parameter derived from the light scattering enhancement factor measurements in the North China Plain // Atmos. Chem. Phys. Discuss. 2014. V. 14. P. 8105–8118.
17. Kuang Y., Zhao C.S., Zhao G., Tao J.C., Xu W., Ma N., Bian Y.X. A novel method for calculating ambient aerosol liquid water content based on measurements of a humidified nephelometer system // Atmos. Meas. Tech. 2018. V. 11. P. 2967–2982.
18. 
Terpugova S.A., Panchenko M.V., Sviridenkov M.A., Dokukina T.A. Sootnosheniya mezhdu opticheskimi i mikrofizicheskimi parametrami kondensatsionnoj izmenchivosti prizemnogo aerozolya // Optika atmosf. i okeana. 2009. V. 22, N 7. P. 629–634; Terpugova S.A., Panchenko M.V., Sviridenkov M.A., Dokukina T.A. Relationships between the optical and microphysical parameters of near-ground aerosol condensation activity // Atmos. Ocean. Opt. 2009. V. 22, N 4. P. 405–412.
19. Wang Z., Cheng Y., Ma N., Mikhailov E.F., Pöschl U., Su H. Dependence of the hygroscopicity parameter k on particle size, humidity and solute concentration: Implications for laboratory experiments, field measurements and model studies // Atmos. Chem. Phys. Discuss. 2017. P. 253–286.
20. Liu Q., Jing B., Peng C., Tong S., Wang W., Ge M. Hygroscopicity of internally mixed multi-component aerosol particles of atmospheric relevance // Atmos. Environ. 2016. V. 125. P. 69–77.
21. Liu H.J., Zhao C.S. Aerosol hygroscopicity derived from size-segregated chemical composition and its parameterization in the North China Plain // Atmos. Chem. Phys. 2013. V. 13, N 8. P. 20885–20922.
22. Gysel M. Closure between chemical composition and hygroscopic growth of aerosol particles during TORCH2 // Atmos. Chem. Phys. 2007. V. 7, N 24. P. 6131–6144.
23. Zhang X., Massoli P., Quinn P.K., Bates T.S., Cappa C.D. Hygroscopic growth of submicron and supermicron aerosols in the marine boundary layer // J. Geophys. Res.: Atmos. 2014. V. 119. P. 8384–8399.
24. Isakov A.A., Tikhonov A.V. O sopostavlenii osrednennyh napravlenij prihoda v Podmoskov'e vozdushnyh mass so srednimi velichinami parametra Henela i pokazatelya prelomleniya veshchestva chastits // Optika atmosf. i okeana. 2010. V. 23, N 1. P. 9–13; Isakov A.A., Tikhonov A.V. On the comparison of the average arrival directions of air masses in the Moscow region versus the average hanel parameters and average particle refractive indices // Atmos. Ocean. Opt. 2010. V. 23, N 3. P. 169–173.
25. Isakov A.A., Tikhonov A.V.
Cvyaz' parametrov aerozolya Tsentral'noj Rossii s vozdushnymi massami // Optika atmosf. i okeana. 2014. V. 27, N 3. P. 192–196; Isakov A.A., Tikhonov A.V. Relationship between aerosol parameters and air masses in Central Russia // Atmos. Ocean. Opt. 2014. V. 27, N 4. P. 475–478.
26. Bougiatioti A., Nenes A., Fountoukis C., Kalivitis N., Pandis S.N., Mihalopoulos N. Size-resolved CCN distributions and activation kinetics of aged continental and marine aerosol // Atmos. Chem. Phys. 2011. V. 11. P. 8791–8808.
27. 
Petters M.D., Carrico C.M., Kreidenweis S.M., Prenni A.J., DeMott P.J., Collett Jr.J.L., Moosmuller H. Cloud condensation nucleation activity of biomass burning aerosol // J. Geophys. Res. 2009. V. 114. P. D22205.
28. Paramonov M., Aalto P.P., Asmi A., Prisle N., Kerminen V.-M., Kulmala M., Petäjä T. The analysis of size-segregated cloud condensation nuclei counter (CCNC) data and its implications for cloud droplet activation // Atmos. Chem. Phys. 2013. V. 13. P. 10285–10301.
29. Hegg D.A., Covert D.S., Jonsson H.H. Measurements of size-resolved hygroscopicity in the California coastal zone // Atmos. Chem. Phys. Discuss. 2008. V. 8. P. 10531–10560.
30. Mikhailov E.F., Mironov G.N., Pöhlker C., Chi X., Krüger M.L., Shiraiwa M., Förster J.-D., Pöschl U., Vlasenko S.S., Ryshkevich T.I., Weigand M., Kilcoyne A.L.D., Andreae M.O. Chemical composition, microstructure, and hygroscopic properties of aerosol particles at the Zotino Tall Tower Observatory (ZOTTO), Siberia, during a summer campaign // Atmos. Chem. Phys. 2015. V. 15. P. 8847–8869.
31. Mihajlov E.F., Ivanova O.A., Vlasenko S.S., Nebos'ko E.Yu., Ryshkevich T.I. Izmereniya kondensatsionnoj aktivnosti yader Ajtkena v prigorode Sankt-Peterburga // Izv. RAN. Fiz. atmosf. i okeana. 2017. V. 53, N 3. P. 1–9.
32. 
Kecorius S., Madueño L., Vallar E., Alas H., Betito G., Birmili W., Cambaliza M.O., Catipay G., Gonzaga-Cayetano M., Galvez M.C., Lorenzo G., Müller T., Simpas J.B., Tamayo E.G., Wiedensohler A. Aerosol particle mixing state, refractory particle number size distributions and emission factors in a polluted urban environment: Case study of Metro Manila, Philippines // Atmos. Environ. 2017. V. 170. P. 169–183.
33. Cocker D.R.III, Whitcock N.E., Flagan R.C., Seinfeld J.H. Hygroscopic properties of Pasadena, California, aerosol // Aerosol Sci. Technol. 2001. V. 35. P. 637–647.
34. Adam M., Putaud J.P., Martins dos Santos S., Dell’Acqua A., Gruening C. Aerosol hygroscopicity at Ispra EMEP-GAW station // Atmos. Chem. Phys. Discuss. 2012. V. 12. P. 5293–5340.
35. Rissler J., Vestin A., Swietlicki E., Fisch G., Zhou J., Artaxo P., Andreae M.O. Size distribution and hygroscopic properties of aerosol particles from dry-season biomass burning in Amazonia // Atmos. Chem. Phys. Discuss. 2005. V. 5. P. 8149–8207.
36. Zhou J., Swietlicki E., Berg O., Aalto P., Hämeri K., Nilsson E., Leck C. Hygroscopic properties of aerosol particles over the central Arctic Ocean during summer // J. Geophys. Res. 2001. V. 106, N D23. P. 32111–32123.
37. Koehler K.A., Kreidenweis S.M., DeMott P.J., Petters M.D., Prenni A.J., Carrico C.M. Hygroscopicity and cloud droplet activation of mineral dust aerosol // Geophys. Res. Lett. 2009. V. 36. P. L08805.
38. Ryshkevich T.I., Mironov G.N., Mironova S.Yu., Vlasenko S.S., CHi H., Andreae M.O., Mihajlov E.F. Sravnitel'nyj analiz gigroskopicheskih svojstv atmosfernyh aerozolej po dannym letnej i zimnej ekspeditsij 2011 year na Sibirskoj fonovoj stantsii ZOTTO // Izv. RAN. Fiz. atmosf. i okeana. 2015. V. 51, N 5. P. 578–586.
39. Levin E.J.T., Prenni A.J., Petters M.D., Kreidenweis S.M., Sullivan R.C., Atwood S.A., Ortega J., DeMott P.J., Smith J.N. An annual cycle of size-resolved aerosol hygroscopicity at a forested site in Colorado // J. Geophys. Res. 2012. V. 117. P. D06201.
40. 
Graham B., Guyon P., Maenhaut W., Taylor P.E., Ebert M., Matthias-Maser S., Mayol-Bracero O.L., Godoi R.H.M., Artaxo P., Meixner F.X., Moura M.A.L., Rocha C., van Grieken R., Glovsky M.M., Flagan R.C., Andreae M.O. Composition and diurnal variability of the natural Amazonian aerosol // J. Geophys. Res.: Atmos. 2003. V. 108. P. 4765.
41. Laktionov A.G. Ravnovesnaya geterogennaya kondensatsiya. L.: Gidrometeoizdat, 1988. 160 p.
42. Petters M.D., Kreidenweis S.M. A single parameter representation of hygroscopic growth and cloud condensation nucleus activity // Atmos. Chem. Phys. 2007. V. 7, N 8. P. 1961–1971.
43. Petters M.D., Kreidenweis S.M. A single parameter representation of hygroscopic growth and cloud condensation nucleus activity – Part 3: Including surfactant partitioning // Atmos. Chem. Phys. 2013. V. 13. P. 1081–1091.
44. 
Häkkinen S.A.K., Manninen H.E., Yli-Juuti T., Me­rikanto J., Kajos M.K., Nieminen T., D’Andrea S.D., Asmi A., Pierce J.R., Kulmala M., Riipinen I. Semi-empirical parameterization of size-dependent atmospheric nanoparticle growth in continental environments // Atmos. Chem. Phys. 2013. V. 13. P. 7665–7682.
45. Herbert F., Wacker U. Parameterization of the CCN-humidity spectrum in dependency on nucleation conditions and aerosol size distribution // Meteorol. Atmos. Phys. 1998. V. 66. P. 213–220.
46. Topping D.O., McFiggans G.B., Coe H. A curved mul­ticomponent aerosol hygroscopicity model framework: Part 1 – Inorganic compounds // Atmos. Chem. Phys. 2005. V. 5. P. 1205–1222.
47. Gruzdev A.N., Isakov A.A., Shukurova L.M. Analiz svyazi kondensatsionnoj aktivnosti prizemnogo aerozolya s ego himicheskim sostavom i otnositel'noj vlazhnost'yu vozduha po izmereniyam na Zvenigorodskoj nauchnoj stantsii // Optika atmosf. i okeana. 2013. V. 26, N 11. P. 978–984; Gruzdev A.N., Isakov A.A., Shukurova L.M. Analysis of relationship between condensation activity of surface aerosol and its chemical composition and relative air humidity according to measurements at the Zvenigorod scientific station // Atmos. Ocean. Opt. 2014. V. 27, N 2. P. 169–175.
48. Panchenko M.V., Sviridenkov M.A., Terpugova S.A., Kozlov V.S.
Aktivnaya spektronefelometriya v issledovanii mikrofizicheskih harakteristik submikronnogo aerozolya // Optika atmosf. i okeana. 2004. V. 17, N 5–6. P. 428–436.
49. 
Kasten F. Visibility forecast in the phase of precondensation // Tellus. 1969. V. 21. P. 631–635.
50. Hänel G. The properties of atmospheric aerosol particles as function of relative humidity at the thermodynamic equilibrium with surrounding moist air // Adv. Geophys. 1976. V. 19. P. 73–188.
51. Panchenko M.V., Kozlov V.S., Pol'kin V.V., Terpugova S.A., Tumakov A.G., Shmargunov V.P. Vosstanovlenie opticheskih harakteristik troposfernogo aerozolya Zapadnoj Sibiri na osnove obobshchennoj empiricheskoj modeli, uchityvayushchej pogloshchayushchie i gigroskopicheskie svojstva chastits // Optika atmosf. i okeana. 2012. V. 25, N 1. P. 46–54.
52. Panchenko M.V., Zhuravleva T.B., Terpugova S.A., Polkin V.V., Kozlov V.S. An empirical model of optical and radiative characteristics of the tropospheric aerosol over West Siberia in summer // Atmos. Meas. Tech. 2012. V. 5, N 7. P. 1513–1527.
53. Panchenko M.V., Terpugova S.A., Pol’kin V.V., Kozlov V.S., Chernov D.G. Modeling of aerosol radiation-relevant parameters in the troposphere of Siberia on the basis of empirical data // Atmosphere. 2018. V. 9, N 11. P. 414–430.
54. Zenkova P.N., Terpugova S.A., Pol’kin V.V., Pol’kin Vas.V., Uzhegov V.N., Kozlov V.S., Yausheva E.P., Panchenko M.V. Razvitie empiricheskoj modeli opticheskih harakteristik aerozolya Zapadnoj Sibiri // Optika atmosf. i okeana. 2021. V. 34, N 3. P. 192–198; Zenkova P.N., Terpugova S.A., Pol’kin V.V., Pol’kin Vas.V., Uzhegov V.N., Kozlov V.S., Yausheva E.P., Panchenko M.V. Development of an Empirical Model of Optical Characteristics of Aerosol in Western Siberia // Atmos. Ocean. Opt. 2021. V. 34, N 4. P. 320–326.
55. Pol'kin V.V.
Uchet zavisimosti granits diapazonov razmerov chastits ot kompleksnogo pokazatelya prelomleniya materiala chastits v fotoelektricheskih schetchikah // Optika atmosf. i okeana. 2017. V. 30, N 5. P. 442–446.
56. 
Aerozol'naya stantsiya IOA SO RAN. URL: http://aerosol.iao.ru (data obrashcheniya: 6.09.2021).
57. Panchenko M.V., Kuryshev S.P., Shmargunov V.P., Terpugova S.A. Avtomatizirovannyj uvlazhnitel' dlya issledovaniya svojstv aerozolya pri izmenenii otnositel'noj vlazhnosti // Aerozoli Sibiri. XXVI Konf.: Tez. dokl. Tomsk: Izd-vo IOA SO RAN. 2019. P. 87.
58. Schetchik aerozol'nyh chastits AЗ-10-0. URL: https:// eco-intech.com/product/schetchik-chastits-az-10/ (data obrashcheniya: 6.09.2021).
59. Kozlov V.S., Pol'kin V.V., Fadeev V.Ya. Vliyanie neopredelennosti opticheskih postoyannyh na tochnost' fotoelektricheskih schetchikov aerozolya // Izv. AN SSSR. Fiz. atmosf. i okeana. 1982. V. 18, N 4. P. 428–431.
60. Quenzel H. Influence of refractive index on the accuracy of size determination of aerosol particles with light scattering aerosol counters // Appl. Opt. 1969. V. 8, N 1. P. 165–169.
61. Cooke D., Kerker M. Response calculations for light scattering aerosol particle counters // Appl. Opt. 1975. V. 14, N 3. P. 734–739.
62. Heyder J., Gebhart J. Optimization of response functions of light scattering instruments for size evaluation of aerosol particles // Appl. Opt. 1979. V. 18, N 5. P. 705–711.
63. Hodkinson J.R., Grenfield J.R. Response calculations for light scattering aerosol counters and photometers // Appl. Opt. 1965. V. 4, N 11. P. 1463–1474.
64. Zuev V.E., Krekov G.M. Opticheskie modeli atmosfery. L.: Gidrometeoizdat, 1986. 256 p.
65. Panchenko M.V., Terpugova S.A., Kozlov V.S., Pol'kin V.V., Yausheva E.P. Godovoj hod kondensatsionnoj aktivnosti submikronnogo aerozolya v prizemnom sloe atmosfery Zapadnoj Sibiri // Optika atmosf. i okeana. 2005. V. 18, N 8. P. 678–683.
66. Gorchakov G.I., Emilenko A.S., Isakov A.A., Sviridenkov M.A. Koeffitsient napravlennogo svetorasseyaniya v oblasti uglov 0.5–170° // Izv. AN SSSR. Fiz. atmosf. i okeana. 1976. V. 12, N 10. P. 1034–1044.
67. Boren K., Hafmen D. Pogloshchenie i rasseyanie sveta malymi chastitsami. M.: Mir, 1986. 664 p.