Vol. 34, issue 12, article # 4

Gorchakov G. I., Dazenko O. I., Kopeikin V. M., Karpov A. V., Gushchin R. A., Gorchakova I. A., Mirsaitov S. F., Ponomareva T. Ta. Dust haze over Northern China Plain. // Optika Atmosfery i Okeana. 2021. V. 34. No. 12. P. . DOI: 10.15372/AOO20211204 [in Russian].
Copy the reference to clipboard

Abstract:

According to monitoring data at AERONET stations in Beijing region in the 21th century, the aerosol optical depth can attain 4.0–4.5 during a dust haze. The optical and microphysical characteristic of the tropospheric aerosol are determined by the coarse mode, with a modal radius of particles of ~ 2–4 mm and a mass content of dust aerosol of 11–12 g/m2. In accordance with monitoring data at the Beijing and Xinglong stations in April 2006 and at the Beijing-CAMS station in March 2021, the imaginary part of the refractive index of dust aerosol in an optically dense dust haze was comparatively small, from 0.0005 to 0.003, with the detection probability 54 and 77% at the Beijing and Xinglong stations, respectively. The spatial distribution of the aerosol optical depth and the wind field reanalysis data are analyzed. The analysis has shown the long-range dust aerosol transport from Takla-Makan desert to Northern China Plain in April 2006. The aerosol radiative forcing at the top and bottom of the atmosphere are calculated for the period of dust haze propagation in China. Its efficiency is shown to be 85 W/m2 at the top of the atmosphere and attains 135–140 W/m2 at the bottom in the Beijing region. Using the wind field reanalysis data, aerosol optical depth monitoring data, and retrievals of the optical and microphysical characteristics of the tropospheric aerosol, the dust aerosol mass flux from Takla-Makan desert to Northern China Plain and the daily total dust aerosol mass transport are estimated to be ~ 1.5 ton/s and 1.5 million tons, respectively.

Keywords:

dust aerosol, optical and microphysical characteristics, particle size distribution, aerosol mass content, circulation of atmosphere, long-range transport, aerosol mass flux, aerosol radiative forcing

References:

  1. Mahowald N., Albani S., Kok J.F., Engelstaedter S., Scanza R., Ward D.S., Flanner M.G. The size distribution of desert dust aerosols and its impact on the Earth system // Aeolian Res. 2014. V. 15. P. 53–71.
  2. Kok J.F., Parteli E.J., Michaels T.I., Bou Karam D. The physics of wind blown sand and dust // Rep. Prog. Phys. 2012. V. 75. P. 1–119.
  3. Miller R., Tegen I., Perlwitz J. Surface radiative for­cing by soil dust aerosols and the hydrologic cycle // J. Geophys. Res. 2004. V. 109D. P. 04203.
  4. Balkanski Y., Schulz M., Claquin T., Guibert S. Re-evaluation of mineral aerosol radiative forcings suggest a better agreement with satellite and AERONET data // Atmos. Chem. Phys. 2007. V. 7. P. 81–95.
  5. DeMott P., Sassen K., Poellot M., Baumgardner D., Rogers D., Brooks S., Prenni A., Kreidenweis S. African dust aerosols as atmospheric ice nuclei // Geophys. Res. Lett. 2003. V. 30, N 14. P. 1732.
  6. Mather B.A., Prospero J.M., Mackie D., Gaiero D., Hesse P.P., Balkanski Y. Global connections between aeolian dust, climate and ocean biogeochemistry at the present day and at the last glacial maximum // Earth Sci. Rev. 2010. V. 99. P. 61–97.
  7. Brunekreef B., Holgate S.T. Air pollution and health // Lancet. 2002. V. 360. P. 1233–1242.
  8. Morman S.A., Plumlee G.S. The role of airborne mineral dusts in human disease // Aeolian Res. 2013. V. 9. P. 203–212.
  9. Shao Y. Physics and Modeling of Wind Erosion. New York: Springer, 2000. 393 p.
  10. Alfaro S.C., Gaudichet A., Gomes L., Maille M. Modeling the size distribution of a soil aerosol produced by sandblasting // J. Geophys. Res. 1997. V. 102D. P. 11239–11249.
  11. Shao Y., Raupach M.R., Findlater P.A. The effect of saltation bombardment on the entrainment of dust by wind // J. Geophys. Res. 1993. V. 98D. P. 12719–12726.
  12. Gillette D.A., Blifford D.A., Fryrear D.W. The influence of wind velocity on the size distributions of aerosols generated by the wind erosion of soils // J. Geophys. Res. 1974. V. 79. P. 4068–4075.
  13. Loosmore G.A., Hunt J.R. Below-threshold, nonabra­ded dust resuspension // J. Geophys. Res. 2000. V. 105D. P. 20.663–20.671.
  14. Chkhetiani O.G., Gledzer E.B., Artamonova M.S. Iordanskii M.A. Dust resuspension under weak wind conditions: Direct observations and model // Atmos. Chem. Phys. 2012. V. 12. P. 5147–5162.
  15. Klose M., Shao Y. Stochastic parameterization of dust emission and application to convective atmospheric conditions // Atmos. Chem. Phys. 2012. V. 12. P. 7309–7320.
  16. Li X.Y., Klose M., Shao Y., Zhang H.S. Convective turbulent dust emission (CTDE) observed over Horqin Sandy Land area and validation of CTDE scheme // J. Geophys. Res.: Atmos. 2014. V. 119. P. 9980–9992.
  17. Vazaeva N.V., Chkhetiani O.G., Maksimenkov L.O. Organizovannaya valikovaya tsirkulyatsiya i perenos mineral'nyh aerozolej v atmosfernom pogranichnom sloe // Izv. RAN. Fiz. atmosf. i okeana. 2019. V. 55, N 2. P. 17–31.
  18. Malinovskaya E.A., Chkhetiani O.G. Ob usloviyah vetrovogo vynosa chastits pochvy // Vychislitel'naya mekhanika sploshnyh sred. 2020. V. 13, N 2. P. 175–188.
  19. Swap R., Garstang M., Greco S., Talbot R., Kallbelrg P. Saharan dust in the Amazon Basin // Tellus B. 1992. V. 44. P. 133–144.
  20. Grini A., Zender C. Roles of saltation, sandblasting, and wind speed variability on mineral dust aerosol size distribution during the Puerto Rican Dust Experiment (PRIDE) // J. Geophys. Res. 2004. V. 109. P. D07202.
  21. In H., Park S.U. Estimation of dust emission amount for a dust storm event occurred in April 1998 // Water, Air, Soil Pollut. 2003. V. 148. P. 201–221.
  22. Liu M., Westphal D.L., Wang S. A high-resolution numerical study of the Asian dust storms of April 2001. // J. Geophys. Res. 2003. V. D 108. P. 8653.
  23. Papayannis A.H., Zhang U., Amiridis V., Ju H.B., Chourdakis E. Extraordinary dust event over Beijing, China, during April 2006. Lidar, Sun photometric, satellite observations and model validation // Geophys. Res. Lett. 2007. V. 34. P. L07806.
  24. Gorchakov G.I., Karpov A.V., Gorchakova I.A., Gushchin R.A., Datsenko O.I. Smog i dymnaya mgla na Severo-kitajskoj ravnine v iyune 2007 year // Optika atmosf. i okeana. 2019. V. 32, N 6. P. 458–464; Gorchakov G.I., Karpov A.V., Gorchakova I.A., Gushchin R.A., Datsenko O.I. Smog and smoke haze over the North China plain in June 2007 // Atmos. Ocean. Opt. 2019. V. 32, N 6. P. 643–649.
  25. Gorchakov G.I., Golitsyn G.S., Sitnov S.A., Karpov A.V., Gorchakova I.A., Gushchin R.A., Datsenko O.I. Krupnomasshtabnye dymki Evrazii v iyule 2016 year // Dokl. RAN. 2018. V. 482. N 2. P. 209–212.
  26. Gorchakov G.I., Sitnov S.A., Karpov A.V., Gorchakova I.A., Gushchin R.A., Datsenko O.I. Krupnomasshtabnye dymki Evrazii letom 2016 year // Izv. RAN. Fiz. atmosf. i okeana. 2019. V. 55, N 3. P. 41–51.
  27. Holben B.N., Eck T.F., Slutsker I., Tanre D., Buis I.P., Setzer A., Vermote E., Reagan J.A., Kaufman Y.J., Nakajima N., Lavenu F., Jakowiak L., Smirnov A. AERONET – a federated instrument network and data archive for aerosol characterization // Remote Sens. Environ. 1998. V. 66, N 1. P. 1–16.
  28. Dubovik O., King M.D. A flexible inversion algorithm for retrieval of aerosol optical properties from Sun and sky radiance measurements // J. Geophys. Res. 2000. V. 105, N D16. P. 20673–20696.
  29. Dubovik O., Holben B., Eck T., Smirnov A., Kaufman Y., King M., Tanré D., Slutsker I. Variability of absorption and optical properties of key aerosol types observed in worldwide locations // J. Atmos. Sci. 2002. V. 59. P. 590–608.
  30. Russell P.B., Redemann J.B., Schmid B., Bergstrom R.W., Livingston J.M., McIntosh D.M., Ramirez S.A., Hartley S., Hobbs P.V., Quinn P., Carrico C.M., Rood M., Öström E., Noone K.J., von Hoyningen-Huene W., Remer L. Comparison of aerosol single scattering albedos derived by diverse techniques in two North Atlantic experiments // J. Atmos. Sci. 2002.V. 59. P. 609–619.
  31. Feng Y., Ramanathan V., Kotamarthi V.R. Brown carbon: A significant atmospheric absorber of solar radiation? // Atmos. Chem. Phys. 2013. V. 13. P. 8607–8621.
  32. Gorchakov G.I., Vasil'ev A.V., Verichev K.S., Semutnikova E.G., Karpov A.V. Tonkodispersnyj korichnevyj uglerod v zadymlennoj atmosfere // Dokl. AN. 2016. V. 471, N 1. P. 91–97.
  33. Gorchakov G.I., Karpov A.V., Vasiliev A.V., Gorchakova I.A. Korichnevyj i chernyj uglerod v smogah megapolisov // Optika atmosf. i okeana. 2017. V. 30. N 1. P. 5–11; Gorchakov G.I., Karpov A.V., Vasiliev A.V., Gorchakova I.A. Brown and black carbons in megacity smogs // Atmos. Ocean. Opt. 2017. V. 30, N 3. P. 248–254.
  34. Gorchakov G.I., Sitnov S.A., Semutnikova E.G., Kopejkin V.M., Karpov A.V., Gorchakova I.A., Pankratova N.V., Ponomareva T.Ya., Kuznetsov G.A., Loskutova O.V., Kozlovtseva E.A., Rodina K.V. Krupnomasshtabnoe zadymlenie evropejskoj territorii Rossii i Belorussii v iyule 2016 year // Issled. Zemli iz kosmosa. 2018. N 1. P. 27–42.
  35. Salomonson V.V., Barnes W.L., Maymon P.W., Montgomery H.E., Ostrow H. MODIS, advanced facility instrument for studies of the Earth as a system // IEEE Trans. Geosci. Rem. Sens. 1989. V. 27. P. 145–153.
  36. Levy R.C., Remer L.A., Mattoo S., Vermote E.F., Kaufman Y.J. Second-generation operational algorithm: retrieval of aerosol properties over land from inversion of moderate resolution imaging spectroradiometer spectral reflectance // J. Geophys. Res. 2007. V. 112. P. D13211.
  37. Mohov I.I., Gorchakova I.A. Radiatsionnyj i temperaturnyj effekty letnih pozharov 2002 year v Moskovskom regione // Dokl. AN. 2005. V. 400, N 4. P. 528–531.
  38. Gorchakova I.A., Mohov I.I. Radiatsionnyj i temperaturnyj effekty dymovogo aerozolya v moskovskom regione v period letnih pozharov 2010 year // Izv. RAN. Fiz. atmosf. i okeana. 2012. V. 48, N 5. P. 558–565.
  39. Gorchakov G.I., Sitnov S.A., Sviridenkov M.A., Semoutnikova E.G., Emilenko A.S., Isakov A.A., Kopeikin V.M., Karpov A.V., Gorchakova I.A., Verichev K.S., Kurbatov G.A., Ponomareva T.Ya. Satellite and ground – based monitoring of smoke in the atmosphere during the summer wildfires in European Russia in 2010 and Siberia in 2012 // Int. J. Remote Sens. 2014. V. 35, N 15. P. 5698–5721.