Vol. 34, issue 11, article # 9

Smalikho I. N., Banakh V. A., Sukharev A. A. Determination of turbulence parameters from the spectra of vertical wind velocity component measured by a pulsed coherent Doppler lidar. Part III. Experiment on the coast of Lake Baikal. // Optika Atmosfery i Okeana. 2021. V. 34. No. 11. P. . DOI: 10.15372/AOO20211109 [in Russian].
Copy the reference to clipboard

Abstract:

Using a new method for determining the parameters of wind turbulence from the spectra of the vertical wind speed measured by a pulsed coherent Doppler lidar (PCDL), an experiment was carried out in 2020 on the coast of Lake Baikal as part of the study of turbulence and internal gravity waves (IGW) in the atmospheric boundary layer (ABL). The article presents the results of this experiment and analyzes the spectra and lidar estimates of the variance of the vertical wind speed and the turbulent energy dissipation rate obtained from the measurements of the Stream Line PCDL in the presence of a low-level jet and IGW in the ABL.

Keywords:

coherent Doppler lidar, wind, turbulence

References:

  1. Banakh V.A., Smalikho I.N. Lidar observations of atmospheric internal waves in the boundary layer of atmosphere on the coast of Lake Baikal // Atmos. Meas. Tech. 2016. V. 9, N 10. P. 5239–5248.
  2. Banakh V.A., Smalikho I.N. Lidar studies of wind turbulence in the stable atmospheric boundary layer // Remote Sens. 2018. V. 10, N 18. P. 1219.
  3. Banakh V.A., Smalikho I.N., Falits A.V. Wind–temperature regime and wind turbulence in a stable boundary layer of the atmosphere: Case study // Remote Sens. 2020. V. 12. P. 955. DOI: 10.3390/rs12060955.
  4. Smalikho I.N., Banakh V.A. Effect of wind transport of turbulent inhomogeneities on estimation of the turbulence energy dissipation rate from measurements by a conically Scanning coherent Doppler lidar // Remote Sens 2020. V. 12, N 17. P. 2802. DOI: 10.3390/rs12172802.
  5. Smalikho I.N., Banakh V.A. Measurements of wind turbulence parameters by a conically scanning coherent Doppler lidar in the atmospheric boundary layer // Atmos. Meas. Tech. 2017. V. 10, N 11. P. 4191–4208.
  6. Banakh V.A., Smalikho I.N., Falits A.V. Estimation of the height of turbulent mixing layer from data of Doppler lidar measurements using conical scanning by a probe beam // Atmos. Meas. Tech. 2021. V. 14, N 2. P. 1511–1524.
  7. Smaliho I.N., Banah V.A., Sherstobitov A.M. Opredelenie parametrov turbulentnosti iz spektrov vertikal'noj skorosti vetra, izmeryaemoj impul'snym kogerentnym doplerovskim lidarom. Part I. Metod // Optika atmosf. i okeana. 2021 V. 34, N 10. P. 769–778.
  8. Smaliho I.N., Banah V.A., Sherstobitov A.M., Falits A.V. Opredelenie parametrov turbulentnosti iz spektrov vertikal'noj skorosti vetra, izmeryaemoj impul'snym kogerentnym doplerovskim lidarom. Part II. Eksperiment na BEKe IOA SO RAN // Optika atmosf. i okeana. 2021. V. 34, N 10. P. 779–791.