Vol. 34, issue 11, article # 5

Protasevich A. E., Nikitin A. V. The kinetic energy operator of linear symmetric molecules of A2B2 type in polyspherical orthogonal coordinates
 
. // Optika Atmosfery i Okeana. 2021. V. 34. No. 11. P. . DOI: 10.15372/AOO20211105 [in Russian].

Copy the reference to clipboard

Abstract:

A simple and convenient form of the vibrational-rotational kinetic energy operator for symmetric molecules of the A2B2 type in polyspherical orthogonal coordinates is proposed. A feature of the proposed approach is the symmetry of the kinetic energy operator with respect to the permutation of the coordinates of two groups of atoms (AB) and the ease of applying contraction of wave functions. A variational calculation of the lower vibrational-rotational energy levels of the acetylene molecule has been made. The energy levels calculated in this work are compared with other sources.

Keywords:

linear molecules, acetylene, kinetic energy operator, orthogonal coordinates, polyspherical coordinates

References:

  1. Chapuisat X., Iung C. Vector parametrization of the N-body problem in quantum mechanics: Polyspherical coordinates // Phys. Rev. A. 1992. V. 45, N 9. P. 6217–6235.
  2. Mladenović M. Rovibrational Hamiltonians for general polyatomic molecules in spherical polar parametrization. I. Orthogonal representations // J. Chem. Phys. 2000. V. 112, N 3. P. 1070–1081.
  3. Mladenović M. Rovibrational Hamiltonians for general polyatomic molecules in spherical polar parametrization. II. Nonorthogonal descriptions of internal molecular geometry // J. Chem. Phys. 2000. V. 112, N 3. P. 1082–1095.
  4. Schwenke D.W. Variational calculations of rovibrational energy levels and transition intensities for tetratomic molecules // J. Phys. Chem. 1996. V. 100, N 8. P. 2867–2884.
  5. Zhang Z., Li B., Shen Z., Ren Y., Bian W. Efficient quantum calculation of the vibrational states of acetylene // Chem. Phys. 2012. V. 400. P. 1–7.
  6. Varshalovich D.A., Moskalev A.N., Hersonskij V.K. Kvantovaya teoriya uglovogo momenta. L.: Nauka, 1975. 439 p.
  7. Bramley M.J., Green W.H., Jr., Handy N.C. Vibration-rotation coordinates and kinetic energy operators for polyatomic molecules // Mol. Phys. 1991. V. 73, N 6. P. 1183–1208.
  8. Banker F. Simmetriya molekul i molekulyarnaya spektroskopiya: Per. s angl. M.: Mir, 1981. 451 p.
  9. Makarewicz J., Skalozub A. Rovibrational molecular hamiltonian in mixed bond-angle and umbrella-like coordinates // J. Phys. Chem. A. 2007. V. 111. P. 7860–7869.
  10. Corwell S.M., Handy N.C. The derivation of vibration-rotation kinetic energy operators in internal coordinates. II // Mol. Phys. 1997. V. 92, N 2. P. 317–330.
  11. Chubb K.L., Yachmenev A., Tennyson J., Yurchenko S.N. Treating linear molecule HCCH in calculations of rotation-vibration spectra // J. Phys. Chem. 2018. V. 149, N 1. P. 014101.
  12. Urru A., Kozin I.N., Mulas G., Braams B.J., Tennyson J. Ro-vibrational spectra of C2H2 based on vibrational nuclear motion calculations // Mol. Phys. 2010. V. 108, N 15. P. 1973–1990.
  13. Herman M., Campargue A., El Idrissi M.I., Vander Auwera J. Vibrational spectroscopic database on acetylene, X1S+g (12C2H2, 12C2D2, and 13C2H2) // J. Phys. Chem. Ref. Data. 2003. V. 32, N 3. P. 921.
  14. Lyulin O.M., Perevalov V.I. ASD-1000: High-resolution, high-temperature acetylene spectroscopic databank // J. Quant. Spectrosc. Radiat. Transfer. 2017. V. 201. P. 94–103.
  15. Nikitin A.V., Protasevich A.E., Rodina A.A., Rey M., Tajti A., Tyuterev Vl.G. Vibrational levels of formaldehyde: Calculations from new high precision potential energy surfaces and comparison with experimental band origins // J. Quant. Spectrosc. Radiat. Transfer. 2021. V. 260. P. 107478.
  16. Chubb K.L., Joseph M., Franklin J., Choudhury N., Furtenbacher T., Császár A.G., Gaspard G., Oguoko P., Kelly A., Yurchenko S.N., Tennyson J., Sousa-Silva C. MARVEL analysis of the measured high-resolution rovibrational spectra of C2H2 // J. Quant. Spectrosc. Radiat. Transfer. 2018. V. 204. P. 42–55.