Vol. 34, issue 11, article # 11

Konyaev P. A., Lukin V. P., Nosov V. V., Nosov E. V., Soin E. L., Torgaev A. V. Comparative measurements of atmospheric turbulence parameters by optical methods. // Optika Atmosfery i Okeana. 2021. V. 34. No. 11. P. 906–915. DOI: 10.15372/AOO20211111 [in Russian].
Copy the reference to clipboard

Abstract:

Different methods for measuring random wavefront tilts are considered. Possibilities of measuring the Fried parameter by the differential method in turbulence sensing and adaptive optics problems are determined. Comparative measurements of the level of turbulence along a horizontal path were carried out by two optical methods: (1) with a differential turbulence meter and (2) a passive method based on image jitter measurements with a high-speed digital video camera mounted at a small astronomical telescope and real-time processing algorithms. Possible differences in the measurement results are discussed. Patterns of the evolution of the convective motion of a medium inside a volume are derived in terms of the velocity field and scalar temperature and pressure fields on the basis of numerical solution of the system of Navier–Stokes equations. Ways of developing a wavefront sensor which ensures high-precision phase measurements in both Kolmogorov and non-Kolmogorov turbulence are suggested.

Keywords:

atmosphere, Kolmogorov turbulence, coherent turbulence, Fried parameter, phase front slope, Navier-Stokes equations

References:

  1. Tatarskij V.I. Adaptivnye sistemy i kogerentnost' // Izv. vuzov. Radiofiz. 1981. V. 24, N 7. P. 861–883.
  2. Gurvich A.S., Kon A.I., Mironov V.L., Khmelevtsov S.S. Lazernoe izluchenie v turbulentnoj atmosfere. M: Nauka. 1976. 277 p.
  3. Gurvich A.S., Kalistratova M.A. Eksperimental'nye issledovaniya fluktuatsij uglov prihoda sveta v usloviyah sil'nyh fluktuatsij intensivnosti // Izv. vuzov. Radiofiz. 1968. V. 11, N 1. P. 66–77.
  4. Mironov V.L., Nosov V.V. Sluchajnye smeshcheniya izobrazheniya v fokuse teleskopa pri lokatsii v turbulentnoj atmosfere // Izv. vuzov. Radiofiz. 1977. V. 20, N 10. P. 1530–1533.
  5. Frid D. Geterodinnyj priem opticheskogo signala pri atmosfernyh iskazheniyah volnovogo fronta // TIIER. 1967. N 1. P. 62–72.
  6. Gel'fer E.I., Kon A.I., Cheremuhin A.N. Izmerenie korrelyatsii «bluzhdaniya» svetovyh tsentrov tyazhesti prostranstvenno ogranichennyh puchkov v turbulentnoj atmosfere // Izv. vuzov. Radiofiz. 1973. V. 16, N 2. P. 723–731.
  7. Kon A.I. Mironov V.L., Nosov V.V. Fluktuatsii tsentrov tyazhesti svetovyh puchkov v turbulentnoj atmosfere // Izv. vuzov. Radiofiz. 1974. V. 17, N 10. P. 1501–1511.
  8. Lukin V.P. Atmosfernaya adaptivnaya optika // Nauka: Novosibirsk, 1986. 248 p.
  9. Noll R.J. Zernike polynomials and atmospheric turbulence // J. Opt. Soc. Am. 1976. V. 66, N 3. P. 207–211.
  10. Lukin V.P., Emaleev O.N. Korrektsiya uglovyh smeshchenij opticheskih puchkov // Kvant. elektron. 1982. V. 9, N 11. P. 2264–2271.
  11. Slobodyan S.M., Galahov V.N., Sazanovich V.M. Ustrojstvo dlya izmereniya uglovyh fluktuatsij opticheskogo puchka // PTE. 1980. V. 27, N 9. P. 192–194.
  12. Kravtsov Yu.A., Saichev A.I. Effekty dvukratnogo prohozhdeniya voln v sluchajno-neodnorodnyh sredah // Uspekhi fiz. nauk. 1982. V. 137, iss. 3. P. 501–521.
  13. LeMaster D.A., Hardie R.C., Gladysz S., Howard M.D., Rucci M.A., Trippel M.E., Power J.D., Karch B.K. Differential tilt variance effects of turbulence in imagery: Comparing simulation with theory // Proc. SPIE. 2016. V. 9846. DOI: 10.1117/12.2223470.
  14. Gladysz S., Segel M., Eisele C., Barros R., Sucher E. Estimation of turbulence strength, anisotropy, outer scale and spectral slope from an LED array // Proc. SPIE. 2015. V. 9614. 961402 (4 September 2015). DOI: 10.1117/12.2191287.
  15. Power J.D., LeMaster D.A., Droege D.R., Gladysz S., Bose-Pillai S. Simulation of anisoplanatic imaging through optical turbulence using numerical wave propagation with new validation analysis // Opt. Eng. 2017. V. 56, N 7. P. 071502.
  16. Gladysz S. Absolute and differential G-tilt in turbulence: Theory and applications // Proc. SPIE. 2016. V. 10002. P. 100020F.
  17. Gladysz S., Filimonov G., Kolosov V. Validation of tilt anisoplanatism models through simulation // Imag. Appl. Opt. 2018. OSA. PW3H.2.pdf. DOI: 10.1364/PCAOP.2018.PW3H.2.
  18. Tokovinin A. From differential image motion to seeing // PASP. 2002. V. 114. P. 1156–1166.
  19. Sarazin M., Roddier F. The ESO differential image motion monitor // Astron. Astrophys. 1990. V. 227. P. 294–300.
  20. Antoshkin L.V., Botygina N.N., Emaleev O.N., Lukin V.P., Lavrinova L.N. Differentsial'nyj opticheskij izmeritel' parametrov atmosfernoj turbulentnosti // Optika atmosf. i okeana. 1998. V. 11, N 11. P. 1219–1223.
  21. Bol'basova L.A., Gritsuta A.N., Kopylov E.A., Lavrinov V.V., Lukin V.P., Selin A.A., Soin E.L. Izmeritel' opticheskoj turbulentnosti na osnove datchika volnovogo fronta SHeka–Gartmana // Opt. zhurn. 2019. V. 86, N 7. P. 42–47.
  22. Lukin V.P., Nosov V.V. Izmerenie drozhaniya izobrazheniya protyazhennogo nekogerentnogo istochnika izlucheniya // Kvant. elektron. 2017. V. 47, N 6. P. 580–588.
  23. Konyaev P.A., Botygina N.N., Antoshkin L.V., Emaleev O.N., Lukin V.P. Ob izmerenii strukturnoj harakteristiki pokazatelya prelomleniya atmosfery passivnymi opticheskimi metodami // Optika atmosf. i okeana. 2015. V. 28, N 8. P. 738–741; Konyaev P.A., Botygina N.N., Antoshkin L.V., Emaleev O.N., Lukin V.P. Passive optical methods in measurement of the structure parameter of the air refractive index // Atmos. Ocean. Opt. 2015. V. 28, N 6. P. 522–525.
  24. Toselli I., Andrews L.C., Phillips R.L. Free space optical system performance for laser beam propagation through non Kolmogorov turbulence // Proc. SPIE. 2007. V. 6457. DOI: 10.1117/12.698707.
  25. Toselli I., Andrews L.C., Phillips R.L., Ferrero V. Angle of arrival fluctuations for free space laser beam propagation in non Kolmogorov turbulence // Proc. SPIE. 2007. V. 6551. DOI: 10.1117/12.719033.
  26. Zilberman A., Golbraikh E., Kopeika N.S. Lidar studies of aerosol and non Kolmogorov turbulence in the mediterranean troposphere // Proc. SPIE. 2005. V. 5987. DOI: 10.1117/12.629687.
  27. Сharnotskii M.I. Wave propagation in random media with spectral exponent outside the (3, 4) range // Workshop on Non-Kolmogorov Turbulence and Associated Phenomena Fraunhofer IOSB, Ettlingen, 1–3.07.2019.
  28. Cui L., Xue B., Zhou F. Generalized anisotropic turbulence spectra and application in the optical waves propagation through anisotropic turbulence // Opt. Express. 2015. V. 23. P. 30088–30103.
  29. Korotkova O., Toselli I. Non-classic atmospheric optical turbulence: Review // Appl. Sci. 2021. V. 11. P. 8487.
  30. Lukin V.P., Bol’basova L.A., Nosov V.V. Comparison of Kolmogorov’s and coherent turbulence // Appl. Opt. 2014. V. 53. P. B231–B236.
  31. Lukin V.P., Nosov E.V., Nosov V.V., Torgaev A.V. Causes of non-Kolmogorov turbulence in the atmosphere // Appl. Opt. 2016. V. 55. P. B163–B168.
  32. Nosov V.V., Lukin V.P., Nosov E.V., Torgaev A.V. Modelirovanie kogerentnyh struktur (topologicheskih solitonov) v zakrytyh pomeshcheniyah putem chislennogo resheniya uravnenij gidrodinamiki // Optika atmosf. i okeana. 2015. V. 28, N 2. P. 120–133.
  33. Lukin V.P., Botygina N.N., Emaleev O.N., Lavrinov V.V. Osobennosti adaptivnoj fazovoj korrektsii iskazhenij opticheskih voln v usloviyah proyavleniya «sil'nyh» fluktuatsij intensivnosti // Kvant. elektron. 2020. V. 50, N 9. P. 866–875.
  34. Lukin V.P., Nosov V.V., Nosov E.V., Torgaev A.V. O vliyanii masshtabov atmosfernoj turbulentnosti // Uspekhi sovremennogo estestvoznaniya. 2015. N 1. Part 7. P. 1179–1183.
  35. Nosov V.V., Lukin V.P., Nosov E.V., Torgaev A.V. Metod izmerenij profilya atmosfernoj turbulentnosti po nablyudeniyam lazernyh opornyh zvezd // Optika atmosf. i okeana. 2016. V. 29, N 8. P. 658–665; Nosov V.V., Lukin V.P., Nosov E.V., Torgaev A.V. Method for atmospheric turbulence profile measurement from observation of laser guide stars // Atmos. Ocean. Opt. 2017. V. 30, N 2. P. 176–183.