Vol. 34, issue 10, article # 5

Smalikho I. N., Banakh V. A., Sherstobitov A. M., Falits A. V. Determination of turbulence parameters from the spectra of vertical wind velocity component measured by a pulsed coherent Doppler lidar. Part II. Experiment at the BEO of the IAO SB RAS. // Optika Atmosfery i Okeana. 2021. V. 34. No. 10. P. . DOI: 10.15372/AOO20211005 [in Russian].
Copy the reference to clipboard

Abstract:

In order to test a new method for determining the parameters of wind turbulence from the spectra of the vertical component of the wind speed vector measured by a pulsed coherent Doppler lidar (PCDL), in the summer of 2020 we conducted an experiment on the territory of the Basic Experimental Observatory (BEO) of the IAO SB RAS. A comparative analysis of the estimates of the turbulent energy dissipation rate obtained by two methods: 1) from the spectrum of the vertical component of the wind velocity vector (new method) and 2) from the azimuth structure function of the radial velocity measured by a conically scanning PCDL (previously used method) showed that the new method also gives an unbiased estimate. The results of lidar measurements of wind turbulence parameters in the presence of a low-level jet stream and an internal gravity wave in the atmospheric boundary layer are presented.

Keywords:

coherent Doppler lidar, wind, turbulence

References:

  1. Smaliho I.N., Banah V.A., Sherstobitov A.M. Opredelenie parametrov turbulentnosti iz spektrov vertikal'noj skorosti vetra, izmeryaemoj impul'snym kogerentnym doplerovskim lidarom. Part I. Metod // Optika atmosf. i okeana. 2021. V. 34, N 10. P. 771–780.
  2. O’Connor E.J., Illingworth A.J., Brooks I.M., Westbrook C.D., Hogan R.J., Davies F., Brooks B.J. A method for estimating the kinetic energy dissipation rate from a vertically pointing Doppler lidar, and independent evaluation from balloon-borne in situ measurements // J. Atmos. Ocean. Technol. 2010. V. 27, N 10. P. 1652–1664.
  3. Pierson G., Davies F., Collier C. An analysis of performance of the UFAM Pulsed Doppler lidar for the observing the boundary layer // J. Atmos. Ocean. Technol. 2009. V. 26, N 2. P. 240–250.
  4. Smalikho I.N., Banakh V.A. Effect of wind transport of turbulent inhomogeneities on estimation of the turbulence energy dissipation rate from measurements by a conically Scanning coherent Doppler lidar // Remote Sens. 2020. V. 12, N 17. P. 2802. DOI: 10.3390/rs12172802.
  5. Banah V.A., Smaliho I.N., Falits A.V. Opredelenie vysoty sloya turbulentnogo peremeshivaniya vozduha iz lidarnyh dannyh o parametrah vetrovoj turbulentnosti // Optika atmosf. i okeana. 2021. V. 34, N 3. P. 169–184.
  6. Banakh V.A., Smalikho I.N., Falits V.A. Estimation of the turbulence energy dissipation rate in the atmospheric boundary layer from measurements of the radial wind velocity by micropulse coherent Doppler lidar // Opt. Express. 2017. V. 25, N 19. P. 22679–22692.
  7. Vakkari V., O’Connor E.J., Nisantzi A., Mamouri R.E., Hadjimitsis D.G. Low-level mixing height detection in coastal locations with a scanning Doppler lidar // Atmos. Meas. Tech. 2015. V. 8, N 4. P. 1875–1885.
  8. Banakh V.A., Smalikho I.N. Lidar observations of atmospheric internal waves in the boundary layer of atmosphere on the coast of Lake Baikal // Atmos. Meas. Tech. 2016. V. 9, N 10. P. 5239–5248.