Vol. 34, issue 09, article # 7

Shishigin S. A. Determination of the temperature of air and the Earth's underlying surface in model calculations of methane content in the atmosphere. // Optika Atmosfery i Okeana. 2021. V. 34. No. 09. P. . DOI: 10.15372/AOO20210907 [in Russian].
Copy the reference to clipboard

Abstract:

The analysis of the atmospheric model, presented in the form of one and two homogeneous layers up to a height of 5 km, was carried out. The parameters of the layers are determined for the standard atmosphere, provided that the contribution to the outgoing radiation of the atmosphere in the spectral ranges of the methane absorption line 1235.95–1236 cm-1 and 1277.5–1277.55 cm-1 is equal to the contributions to the outgoing radiation of the Earth by all inhomogeneous layers which make them up. Possible correction of the air and underlying surface temperature in determination of methane content in the Earth's atmosphere is considered.

Keywords:

atmosphere, methane, temperature, homogeneous layer, IR radiation, spectrum, method

References:

  1. Polyakov A.V., Timofeev Yu.M., Uspenskij A.B. Vozmozhnosti opredeleniya temperatury i izluchatel'noj sposobnosti poverhnosti sushi po dannym sputnikovyh IK-zondirovshchikov vysokogo spektral'nogo razresheniya (IKFS-2) // Issled. Zemli iz kosmosa. 2010. N 4. P. 85–90.
  2. Grishchenko M.Yu., Chernulich K.K. Issledovanie svyazi nazemnyh i kosmicheskih temperaturnyh dannyh na primere ostrovov Vrangelya i Kunashir // Izv. vuzov. Geodeziya i aerofotos"emka. 2019. V. 63, N 5. P. 566–575.
  3. Volkova E.V., Uspenskij S.A. Distantsionnoe opredelenie temperatury podstilayushchej poverhnosti, prizemnoj temperatury vozduha i effektivnoj temperatury po sputnikovym dannym dlya yuga Evropejskoj territorii Rossii // Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa. 2016. V. 13, N 5. P. 291–303.
  4. Zverev A.T., Fisenko E.V. Sovremennye metody opredeleniya zasushlivyh zemel' po kosmicheskim snimkam // Izv. vuzov. Geodeziya i aerofotos"emka. 2012. N 3. P. 53–63.
  5. Sobrino J.A., Jimenez-Munoz J.C., Zarco-Tejada P.J., Sepulcre-Canto G., Miguel E. Land surface temperature derived from Airborne Hyperspectral Scanner Thermal Infrared Data // Remote Sens. Environ. 2006. V. 102. P. 99–115.
  6. Jimenez-Munoz J.C., Sobrino J.A., Skokovic D., Mattar C., Cristobal J. Land surface temperature retrieval methods from Landsat-8 thermal infrared sensor data // IEEE Geosci. Remote Sens. Lett. 2014. V. 11, iss. 10. Р. 1840–1843.
  7. Suga Y., Ogawa H., Ohno K., Yamada K. Detection of surface temperature from Landsat-7/ETM+ // Adv. Space Res. 2003. V. 32, iss. 11. P. 2235–2240.
  8. Jimenez-Munoz J.C., Cristobal J., Sobrino J.A., Soria G., Ninyerola M., Pons X. Revision of the single-channel algorithm for land surface temperature retrieval from Landsat thermal-infrared data // IEEE Geosci. Remote Sens. Lett. 2009. V. 47, iss. 1. P. 339–349.
  9. Mihajlenko S.N., Babikov Yu.L., Golovko V.F. Informatsionno-vychislitel'naya sistema «Spektroskopiya atmosfernyh gazov». Struktura i osnovnye funktsii // Optika atmosf. i okeana. 2005. V. 18, N 9. P. 765–776.
  10. Rokotyan N.V., Gribanov K.G., Zaharov V.I. Effekt temperaturno-nezavisimogo pogloshcheniya i ego ispol'zovanie dlya zondirovaniya parnikovyh gazov v atmosfere // Optika atmosf. i okeana. 2011. V. 24, N 6. P. 510–515.
  11. Shishigin S.A. Issledovanie korrektirovki opredeleniya soderzhaniya gaza v vozduhe po uhodyashchemu izlucheniyu atmosfery // Optika atmosf. i okeana. 2019. V. 32, N 11. P. 925–929.
  12. Shishigin S.A. Metodika opredeleniya soderzhaniya metana v atmosfere s pomoshch'yu korrelyatsionnogo radiometra // Issled. Zemli iz kosmosa. 2015. N 5. P. 3–8.