Vol. 34, issue 09, article # 5

Rostovtseva V. V., Izhitskiy A. S., Goncharenko I. V., Konovalov B. V., Zavialov P. O. On the influence of hydrophysical conditions on representation of hydro-optical measurements using the data of the Middle Caspian coastal water exploration. // Optika Atmosfery i Okeana. 2021. V. 34. No. 09. P. 696–704. DOI: 10.15372/AOO20210905 [in Russian].
Copy the reference to clipboard


Remote passive optical measurements of the state of waters from a ship, air carrier, or satellite are the most informative due to the coverage of a large area and high frequency of measurements. At the same time, for a correct assessment of the data obtained it is usually necessary to carry out in situ measurements of the water state, which means the analysis of water samples taken at a limited number of points. Using the studies carried out in coastal regions of the Middle Caspian, the conditions for the suitability of such point measurements for calibrating the results of remote hydro-optical measurements by the EMMA complex (Ecological Monitoring of Marine Waters) from board of a moving vessel have been identified. The explanation for the identified limitations was given by analysis of the structure of coastal waters obtained by water vertical sounding at the stations and operation of a flow-through system for determination of surface water temperature and salinity. An algorithm is proposed for selecting water samples suitable for calibration of remote sensing data by correlating them with the Secchi disk depth. The efficiency of this method is demonstrated. It is shown what kind of hydrophysical conditions should be taken into account for the preliminary selection of water sampling sites for calibration of optical remote measurements.


optical passive remote sensing, natural components of seawater, suspended matter, phytoplankton and colored organic matter, Secchi disk depth of visibility, vertical profiles of water temperature, salinity and turbidity, water sampling


  1. Palmer S.C.J., Kutser T., Hunter P.D. Remote sensing of inland waters: Challenges, progress and future directions // Remote Sens. Environ. 2015. V. 157. P. 1–8.
  2. Mouw C.B., Greb S., Aurin D., DiGiacomo P.M., Lee Z.-P., Twardowski M., Binding C., Hu C., Ma R., Moore T., Moses W., Craig S.E. Aquatic color radiometry remote sensing of coastal and inland waters: Challenges and recommendations for future satellite missions// Remote Sens. Environ. 2015. V. 160. P. 15–30
  3. Schaeffer B.A., Schaeffer K.G., Keith D., Lunetta R.S., Conmy R., Gould R.W. Barriers to adopting satellite remote sensing for water quality management // Int. J. Remote Sens. 2013. V. 34. P. 7534–7544.
  4. Tyler A.N., Hunter P.D., Spyrakos E., Groom S., Constantinescu A.M., Kitchen J. Developments in Earth observation for the assessment and monitoring of inland, transitional, coastal and shelf-sea waters // Sci. Total Environ. 2016. V. 572. P. 1307–1321.
  5. Hestir E.L., Brando V.E., Bresciani M., Giardino C., Matta E., Villa P., Dekker A.G. Measuring freshwater aquatic ecosystems: The need for a hyperspectral global mapping satellite mission // Remote Sens. Environ. 2015. V. 167. P. 181–195.
  6. Suslin V., Churilova T. A regional algorithm for separating light absorption by chlorophyll-a and coloured detrital matter in the Black Sea, using 480–560 nm bands from ocean colour scanners // Int. J. Remote Sens. 2016. V. 37. P. 4380–4400.
  7. Rostovtseva V.V. Metod polucheniya spektrov pogloshcheniya morskoj vody po dannym passivnogo distantsionnogo zondirovaniya s borta sudna s ispol'zovaniem svojstv chistoj vody // Optika atmosf. i okeana. 2015. V. 28, N 11. P. 1003–1011
  8. Alikas K., Ansko I., Vabson V., Ansper A., Kangro K., Uudeberg K., Ligi M. Consistency of radiometric satellite data over lakes and coastal waters with local field measurements // Remote Sens. 2020. V. 12. P. 616. DOI: 10.3390/rs12040616.
  9. Yushmanova A., Kopelevich O., Vazyulya S., Sahling I. Inter-annual variability of the seawater light absorption in surface layer of the northeastern Black Sea in connection with hydrometeorological factors // J. Mar. Sci. Eng. 2019. V. 7. Р. 326. DOI: 10.3390/jmse7090326.
  10. Guangjia Jianga, Loiselled S.A., Dingtian Yangc, Ronghua Maa, Wen Sue, Changjun Gaof. Remote estimation of chlorophyll a concentrations over a wide range of optical conditions based on water classification from VIIRS observations // Remote Sens. Environ. 2020. V. 241. P. 111735.
  11. Karalli P.G., Kopelevich O.V., Saling I.V., Sheberstov S.V., Pautova L.A., Silkin V.A. Validatsiya distantsionnyh otsenok parametrov kokkolitoforidnyh tsvetenij v Barentsevom more po dannym naturnyh izmerenij // Fundam. i prikl. gidrofiz. 2018. V. 11, N 3. P. 55–63.
  12. Eleveld M.A., Ruescas A.B., Hommersom A., Moore T.S., Peters S.W.M., Brockmann C. An optical classification tool for global lake waters // Remote Sens. 2017. V. 9. P. 420–444.
  13. Bresciani M., Pinardi M., Free G., Luciani G., Ghebrehiwot S., Laanen M., Peters S., Della Bella V., Padula R., Giardino C. The use of multisource optical sensors to study phytoplankton spatio-temporal variation in a shallow turbid lake // Water. Novel Lake Water Quality Monitoring Strategies. V. 12, N 284. P. 1–17. DOI: 10.3390/w12010284.
  14. Alikas K., Ansko I., Vabson V., Ansper A., Kangro K., Uudeberg K., Ligi M. Consistency of radiometric satellite data over lakes and coastal waters with local field measurements // Remote Sens. 2020. V. 12. P. 616. DOI: 10.3390/rs12040616.
  15. Peters S., Laanen M., Groetsch P., Ghezehegn S., Poser K., Hommersom A., De Reus E., Spaias L. WISPstation: A new autonomous above water radiometer system // Proc. Ocean Opt. XXIV Conf. Dubrovnik, Croatia, 7–12 October 2018.
  16. Rostovtseva V.V., Goncharenko I.V., Konovalov B.V., Alyukaeva A.F. Operativnaya otsenka sostoyaniya pribrezhnyh morskih akvatorij po dannym passivnogo opticheskogo zondirovaniya poverhnosti vody s borta sudna // Optika atmosf. i okeana. 2017. V. 30, N 12. P. 1017–1022.
  17. Konovalov B.V., Kravchishina M.D., Belyaev N.A., Novigatskij A.N. Opredelenie kontsentratsii mineral'noj vzvesi i vzveshennogo organicheskogo veshchestva po ih spektral'nomu pogloshcheniyu // Okeanologiya. 2014. V. 54, N 4. P. 1–9.
  18. GOST «Voda. Metodika spektrofotometricheskogo opredeleniya hlorofilla a». M.: Goskomitet SSSR po ohrane prirody, 1990. 16 p.
  19. Rostovtseva V.V., Konovalov B.V., Goncharenko I.V., Hlebnikov D.V. Sposob otsenki soderzhaniya primesej v morskih vodah s pomoshch'yu operativnoj spektrofotometrii // Okeanologiya. 2017. V. 57, N 4. P. 560–574.
  20. Pope R.M., Fry E.S. Absorption spectrum (380–700 nm) of pure water. Integrating cavity measurements // Appl. Opt. 1997. V. 36. P. 8710–8723.