Vol. 34, issue 09, article # 4

Kalinskaya D. V., Medvedev A. V., Aleskerova A. A. Influence of dust transport on the intensity of cyanobacterial bloom in Caspian Sea. // Optika Atmosfery i Okeana. 2021. V. 34. No. 09. P. . DOI: 10.15372/AOO20210904 [in Russian].
Copy the reference to clipboard

Abstract:

The events of the dust aerosol transport to the water and coastal areas of the Caspian Sea during 2008–2010 are analyzed. This aerosol type is shown to be an additional source of biogenic elements in the surface layer of the sea. The comparative analysis of the optical characteristics of the northern, middle, and southern parts of the Caspian Sea, which significantly differ in hydrometeorological conditions and, hence, in the contribution of various factors which determine a possibility of anomalous cyanobacteria blooming, has been carried out. The effect of dust aerosol on the bloom of cyanobacteria is maximal in the southern part of the region under study. The results of the study of algae bloom anomalies in the Caspian Sea region are presented.

Keywords:

atmosphere, aerosol, сyanobacteria, Caspian Sea, MODIS, AERONET, HYSPLIT, CALIPSO

References:

  1. Emel'yanov E.M., Kol' L.V. Perenos eolovoj pyli i ee rol' v protsesse osadkoobrazovaniya v Atlanticheskom okeane // Litologiya i poleznye iskopaemye. 1979. N 2. P. 3–15.
  2. Lisitsyn A.P. Aridnaya sedimentatsiya v Mirovom okeane. Rasseyannoe osadochnoe veshchestvo atmosfery // Geologiya i geofizika. 2011. V. 52, N 10. P. 1398–1439.
  3. Lisitsyn A.P. Mirovoj okean. V. II. Fizika, himiya i biologiya okeana. Osadkoobrazovanie v okeane i vzaimodejstvie geosfer Zemli. 2014.
  4. Lisitsyn A.P. Marginal'nyj fil'tr okeanov // Okeanologiya. 1994. V. 34, N 5. P. 735–747.
  5. Avila A., Penuelas J. Increasing frequency of Saharan rains over northeastern Spain and its ecological consequences // Sci. Total Environ. 1999. V. 228, N 2–3. P. 153–156.
  6. Darwin C. Geological Observations on the Volcanic Islands visited during the voyage of HMS Beagle, together with some brief notices on the geology of Australia and the Cape of Good Hope; being the second part of the Geology of the Voyage of the Beagle, under the command of Capt. Fitzroy, RN, during the years 1832 to 1836: London: Smith Elder and Co, 1844. 176 p.
  7. Darwin C. Geological observations on the volcanic islands, visited during the voyage of HMS Beagle: together with some brief notices on the geology of Australia and the Cape of Good Hope. England: Cambridge University Press, 2011. 139 p.
  8. Guo C., Xia X., Pitta P., Herut B., Rahav E., Berman-Frank I., Giannakourou A., Tsiola A., Tsagaraki T.M., Liu H. Shifts in microbial community structure and activity in the ultra-oligotrophic Eastern Mediterranean Sea driven by the deposition of Saharan dust and European aerosols //Frontiers in Marine Science. 2016. V. 3. P. 170.
  9. Gallisai R., Peters F., Volpe G., Basart S., Baldasano J.M. Saharan dust deposition may affect phytoplankton growth in the Mediterranean Sea at ecological time scales // PloS one. 2014. V. 9, N 10. P. e110762.
  10. Pulido-Villena E., Wagener T., Guieu C. Bacterial response to dust pulses in the western Mediterranean: Implications for carbon cycling in the oligotrophic ocean // Global Biogeochem. Cycl. 2008. V. 22, N 1. DOI: 10.1029/2007GB003091.
  11. Marañén E., Fernández A., Mourino-Carballido B., Martínez-García S., Teira E., Cermeno P., Chouciño P., Martínez-Rodríguez S., Teira E., Fernández E., Calvo-Díaz A., Xosé Anxelu G. Morán, Bode A., Moreno-Ostos E., Varela M.M., Patey M., Achterber E.P. Degree of oligotrophy controls the response of microbial plankton to Saharan dust // Limnol. Oceanog. 2010. V. 55, N 6. P. 2339–2352.
  12. Yli-Tuomi T., Venditte L., Hopke P.K., Basunia M.S., Landsberger S., Viisanen Y., Paatero J. Composition of the Finnish Arctic aerosol: Collection and analysis of historic filter samples // Atmos. Environ. 2003. V. 37, N 17. P. 2355–2364.
  13. Vinogradova A.A. Anthropogenic pollutants in the Russian Arctic atmosphere: sources and sinks in spring and summer // Atmos. Environ. 2000. V. 34, N 29–30. P. 5151–5160.
  14. Shevchenko V.P., Lisitsyn A.P., Vinogradova A.A., Kutsenogij K.P., Smirnov V.V., Shtajn R. Aerozoli Arktiki i ih vliyanie na okruzhayushchuyu sredu // XIII rab. gruppa «Aerozoli Sibiri», 28 november – 1 december 2206 нуфк. P. 148–184.
  15. Popovicheva O.B., Makshtas A.P., Movchan V.V., Persiantseva N.M., Timofeev M.A., Sitnikov N.M. Aerozol'naya sostavlyayushchaya privodnogo sloya atmosfery po dannym nablyudenij ekspeditsii «Sever-2015» // Problemy Arktiki i Antarktiki. 2017. N 4. P. 57–65.
  16. Krikun V.A. Metod i apparaturnye kompleksy dlya issledovaniya vozdejstviya atmosfernogo aerozolya na bioopticheskie parametry morskoj vody: avtoref. dis. … kand. fiz.-mat. nauk. M.: Tihookeanskij okeanologicheskij institut im. V.I. Il'icheva DVO RAN, 2008. 16 p.
  17. Bolgov M.V., Krasnozhon G.F., Lyubushin A.A. Kaspijskoe more: ekstremal'nye gidrologicheskie sobytiya. M.: Nauka, 2007. 380 p.
  18. Holben B.N., Eck T.F., Slutsker I., Tanre D., Buts J.P., Setzer A., Vermote F., Reagan J.A., Kaufman Y.J., Nakajama T., Lavenu F., Jankoviak I., Smirnov A. AERONET – A federated instrument network and data archive for aerosol characterization // Remote Sens. Environ. 1998. N 66. P. 1–16.
  19. NOAA HYSPLIT Trajectory Model [Electronic resource]. URL: http://ready.arl.noaa.gov/HYSPLIT.php (last access: 7.05.2021)
  20. Klett J.D. Stable analytical inversion solution for processing lidar returns // Appl. Opt. 1981. V. 20. P. 211–220.
  21. Ansmann A., Müller D. Lidar and atmospheric aerosol particles // Lidar. 2005. P. 105–141.
  22. Müller D., Ansmann A., Mattis I., Tesche M., Wandinger U., Althausen D., Pisani G. Aerosol-type-depen­dent lidar ratios observed with Raman lidar // J. Geophys. Res. 2007. V. 112. P. D16202. DOI: 10.1029/ 2006JD008292.
  23. Omar A.H., Winker D.M., Vaughan M.A., Hu Y., Trepte C.R., Ferrare R.A., Lee K., Hostetler C.A., Kittaka C., Rogers R.R., Kuehn R.E., Liu Z. The CALIPSO automated aerosol classification and lidar ratio selection algorithm // J. Atmos. Ocean. Technol. 2009. V. 26. P. 1994–2014. DOI: 10.1175/2009JTECHA1231.1.
  24. Suslin V.V., Slabakova V.H., Kalinskaya D.V., Pryahina S.F., Golovko N.I. Opticheskie svojstva chernomorskogo aerozolya i verhnego sloya morskoj vody po dannym pryamyh i sputnikovyh izmerenij // Morskoj gidrofiz. zhurn. 2016. V. 187, N 1. P. 20–32.
  25. Lysenko S.A. Atmosfernaya korrektsiya mnogospektral'nyh sputnikovyh snimkov na osnove approksimatsionnoj modeli perenosa solnechnogo izlucheniya // Optika atmosf. i okeana. 2017. V. 30, N 9. P. 775–788.
  26. Belov V.V., Tarasenkov M.V., Engel' M.V., Gridnev Yu.V., Zimovaya A.V., Poznaharev E.S., Abramochkin V.N., Fedosov A.V., Kudryavtsev A.N. Atmosfernaya korrektsiya sputnikovyh izobrazhenij zemnoj poverhnosti v opticheskom diapazone dlin voln. Opticheskaya svyaz' na rasseyannom izluchenii // Optika atmosf. i okeana. 2019. V. 32, N 9. P. 753–757.
  27. Aleskerova A.A. Kubryakov A.A., Stanichny S.V., Lishaev P.N., Mizyuk A.I.  Tsvetenie tsianobakterij v Azovskom more po dannym sensorov sputnikov serii LANDSAT // Issledovanie Zemli iz kosmosa. 2018. N 6. P. 52–64.
  28. Kalinskaya D.V., Aleskerova A.A. Anomal'nye opticheskie harakteristiki pribrezhnyh vod zapadnoj chasti CHernogo morya v vesenne-letnij period 2020 year // Optika atmosf. i okeana. Fiz. atmosf.: Materialy XXV Mezhdunar. simpoz. (in print).
  29. Varenik A.V., Kalinskaya D.V. The effect of dust transport on the concentration of chlorophyll-A in the surface layer of the Black Sea // Appl. Sci. 2021. V. 11. P. 4692. DOI: 10.3390/app11104692.