Vol. 34, issue 09, article # 3

Prokop'ev V. E. Spectra of photobiological inactivation of SARS-CoV-2 by solar UVB radiation (280–320 nm). // Optika Atmosfery i Okeana. 2021. V. 34. No. 09. P. 682–688. DOI: 10.15372/AOO20210903 [in Russian].
Copy the reference to clipboard


In this work, based on experimental ground-based observations of the intensity and spectrum of solar radiation in the UVB range in the city of Tomsk (56°29´ N, 84°56.89´ E) from 26.03.2020 to 26.03.2021 and analysis of works on the structure and chemical molecular composition of SARS-CoV-2, primary photoacceptors and spectra of photobiological inactivation of the SARS-CoV-2 molecular structures (genome and S-thorn) by UVB radiation were determined for the first time.


COVID-19, SARS-CoV-2, spectra of photobiological action, photoacceptor molecules, active centers, RNA, S-protein, guanine, tryptophan, hydroxyl molecule


  1. Xu R., Cui B., Duan X., Zhang P., Zhou X., Yuan Q. Saliva: Potential diagnostic value and transmission of 2019-nCoV // Int. J. Oral. Sci. 2020. V. 12, N 11. P. 1–6.
  2. Diffey B.L. Solar ultraviolet radiation effects on biological systems // Phys. Med. Biol. 1991. 36. P. 299.
  3. Hessling M., Hones K., Vatter P., Haag R., Sieber N. Ultraviolet irradiation doses for coronavirus inactivation – review and analysis of coronavirus photoinactivation studies // GMS Hyg. Infect. Control. 2020. V. 15. P. 1–8.
  4. Lu R., Zhao X., Li Ju., Niu P., Yang B., Wu H., Wang W., Song H., Huang B., Zhu N, Bi Yu., Ma X., Zhan F., Wang L., Hu T., Zhou H., Hu Z., Zhou W., Zhao L., Chen Ji., Meng Ya., Wang Ji., Lin Ya., Yuan Ji., Xie Z., Ma Ji., Liu W.J., Wang D., Wenbo Xu W., Holmes E.C., Gao G.F., Wu G., Chen W., Shi W., Tan W. Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding // Lancet. 2020. V. 395, N 10224. P. 565–574.
  5. Wu F., Zhao S., Yu B., ChenYan-Mei, Wang W., Hu Yi, Song Zhi-Gang, Tao Zhao-Wu, Tian Jun-Hua, Pei Yuan-Yuan, Yuan Ming-Li, Zhang Yu-Ling, Dai Fa-Hui, Liu Yi, Wang Qi-Min, Zheng Jiao-Jiao, Xu L., Holmes Ed.C., Zhang Yong-Zhen. Complete genome characterisation of a novel coronavirus associated with severe human respiratory disease in Wuhan, China. Preprint // bioRxiv. 2020. DOI: 10.1101/2020.01.24.919183.
  6. Heilingloh C.S., Aufderhorst U.W., Schipper L.S., Dittmer U., Witzke O., Yang D., Zheng X., Sutter K., Trilling M., Alt M., Steinmann E., Krawczyk A. Susceptibility of SARS-CoV-2 to UV irradiation // Am. J. Infect. Control. 2020. V. 48. P. 1273–1275. 
  7. Sosnin E.A., Erofeev M.V., Avdeev S.M., Panchenko A.N., Panarin V.A., Skakun V.S., Tarasenko V.F., Shitts D.V. Ul'trafioletovaya lampa bar'ernogo razryada na molekulah OH // Kvant. elektron. 2006. V. 36, N 10. P. 981–983.
  8. Lytle C.D., Sagripanti J.-L. Predicted inactivation of viruses of relevance to biodefense by solar radiation // J. Virol. 2005. V. 79, N 22. P. 14244–14252.
  9. Nicastro F., Siron G., Antonello E., Bianco A., Biasin M., Brucato J.R., Ermolli I., Pareschi G., Salvati M., Tozzi P., Trabattoni D., Clerici M. Modulation of COVID-19 epidemiology by UV-B and A photons from the Sun. Preprint // MedRxiv. 2020. DOI: 10. 1101/2020.06.03.20121392.
  10. Schuit M., Gardner S., Wood S., Bower K., Williams G., Freeburger D., Dabisch P. The influence of simulated sunlight on the inactivation of influenza virus in aerosols // J. Infect. Dis. 2019. V. 221. P. 372–378.
  11. Schuit M., Ratnesar-Shumate S., Jason Yolitz J., Williams G, Weaver W., Green B., Miller D., Krause M., Beck K., Wood S., Holland B., Bohannon Jo., Freeburger D., Hooper I., Biryukov J., Altamura L.A., Wahl V., Hevey M., Dabisch P. Airborne SARS-CoV-2 Is rapidly inactivated by simulated sunlight // J. Infect. Dis. 2020. V. 222. P. 564–571.
  12. Ratnesar-Shumate S., Williams G., Brian Green B., Krause M., Holland B., Wood St., Bohannon Jo., Boyd­ston Je., Freeburger D., Hooper I., Beck K., Yeager Jo., Altamura Louis A., Biryukov Je., Yolitz Ja., Schuit M., Wahl V., Hevey M., Dabisch P. Simulated sunlight rapidly inactivates SARS-CoV-2 on surfaces // J. Infect. Dis. 2020. V. 222. P. 214–222.
  13. Herman J., Biegel B., Huang L. Inactivation times from 290 to 315 nm UVB in sunlight for SARS coronaviruses CoV and CoV-2 using OMI satellite data for the sunlit Earth // Air Qual., Atmos. Health. 2020 DOI: 10.1007/s11869-020-00927-2.
  14. Estimated Decay of SARS-CoV-2 (virus that causes COVID-19). [Electron resource]. URL: https://dhs.gov/science-and-technology/sars-calculator (last accsess: 11.04.2021).
  15. Gueymard С.A. Reference solar spectra: Their evolution, standardization issues, and comparison to recent measurements // Adv. Space Res. 2006. V. 37. P. 323–340.
  16. Keller-Rudek H., Moortgat G.K., Sander R. The MPI-Mainz UV/VIS spectral atlas of gaseous molecules of atmospheric interest // Earth Syst. Sci. Data. 2013. V. 5, N 2. P. 365–373.
  17. Jacques S., Prahl S. Optical absorption of water compendium [Electronic Resourse]. VRL:https://omlc.org/spectra/water/abs/index.html (last access: 09.09.2020).
  18. Yazid F., Zain M.N., Yusof Z.M., Ghazali F.S., Zul­kifli S.A., Nadri N.M., Ariffin S.H.Z., Wahab R.M.A., Caries detection analysis in human saliva alpha amylase // AIP Conf. Proc. 2020. V. 2203. P. 1–7. DOI: 10. 1063/1.5142106.
  19. H'yuber K.-P., Gertsberg G. Konstanty dvuhatomnyh molekul // pod red. N.N. Soboleva. M.: Mir, 1984. 366 p.
  20. Tortorici M.A., Walls A.C., Lang Y., Wang Chu., Li Z., Koerhuis D., Boons G.-J., Bosch B.-J., Rey F.A., Groot R.J., Veesler D. Structural basis for human coronavirus attachment to sialic acid receptors // Nat. Struct. Mol. Biol. 2019. V. 26. P. 481–489.
  21. Bioindikatsiya stratosfernogo ozona / pod obshchej red. V.V. Zueva. Novosibirsk: Izd-vo SO RAN, 2006. 228 p.
  22. Belan B.D. Ozon v troposfere / pod. red. V.A. Pogodaeva. Tomsk: Izd-vo IOA SO RAN, 2010. 488 p.
  23. Kohl J.L., Parkinson W.H., Kurucs R.L. Center and Limb Solar Spectrum in High Spectral Resolution: 225.2 nm to 319.6 nm Cambridge: Harvard-Smithsonian Centre for Astrophysics, 1978. 365 p.