Vol. 34, issue 08, article # 4

Tsydenov B. O. The effects of heat fluxes on phytoplankton distribution in a freshwater lake. // Optika Atmosfery i Okeana. 2021. V. 34. No. 08. P. . DOI: 10.15372/AOO20210804 [in Russian].
Copy the reference to clipboard


The role of heat fluxes in phytoplankton production during the summer heating of Barguzin Bay of Lake Baikal was explored using mathematical modeling. The results of numerical experiments showed effects of longwave radiation and latent and sensible heat fluxes on phytoplankton growth in the upper layers. This study found that the largest concentrations of phytoplankton biomass are localized at some distance from the mouth of the Barguzin River.


heat fluxes, phytoplankton, lake ecosystem, numerical modeling, Barguzin Bay, Lake Baikal


  1. Ji Z.-G. Hydrodynamics and Water Quality: Modeling Rivers, Lakes, and Estuaries. Hoboken, New York: Wiley-Interscience, 2008. 676 p.
  2. Lorenzzetti J.A., Araújo C.A.S., Curtarelli M.P. Mean diel variability of surface energy fluxes over Manso Reservoir // Inland Waters. 2015. N 5. P. 155–172.
  3. Smyth T.J., Allen I., Atkinson A., Bruun J.T., Harmer R.A., Pingree R.D., Widdicombe C.E., Somerfield P.J. Ocean net heat flux influences seasonal to interannual patterns of plankton abundance // PLoS ONE. 2014. V. 9, N 6. P. e98709.
  4. Beyrich F., Leps J.P., Mauder M., Bange J., Foken T., Huneke S., Lohse H., Lüdi A., Meijninger W.M.L., Mironov U.W., Zittel P. Area-averaged surface fluxes over the LITFASS region based on eddy-covariance measurements // Bound.-Lay. Meteorol. 2006. V. 121, N 1. P. 33–65.
  5. Jiménez C., Prigent C., Aires F. Toward an estimation of global land surface heat fluxes from multisatellite observations // J. Geophys. Res. D. 2009. V. 114, N D6. P. D06305.
  6. Ippolitov I.I., Kabanov M.V., Loginov S.V., Sokolov K.I., Haryutkina E.V. Izmenchivost' sostavlyayushchih teplovogo balansa poverhnosti aziatskoj territorii Rossii v period sovremennogo global'nogo potepleniya // Optika atmosf. i okeana. 2011. V. 24, N 1. P. 22–29.
  7. Heinemann G., Kerschgens M. Simulation of surface energy fluxes using high-resolution non-hydrostatic simulations and comparisons with measurements for the LITFASS-2003 experiment // Bound.-Lay. Meteorol. 2006. V. 121, N 1. P. 195–220.
  8. Timoshkin O.A., Bondarenko N.A., Kulikova N.N., Lukhnev A.G., Maximova N.V., Malnik V.V., Moore M.V., Nepokrytykh A.V., Obolkina L.A., Rozhkova N.A., Shirokaya A.A., Tomberg I.V., Zaitseva E.P., Bukshuk N.A., Poberezhnaya A.E., Gula M.I., Timoshkina E.M., Volkova E.A., Zvereva Yu.M. Protection of Lake Baikal requires more stringent, not more lenient, environmental regulation // J. Great Lakes Res. 2019. V. 45, N 3. P. 401–402.
  9. Volkova E.A., Bondarenko N.A., Timoshkin O.A. Morphotaxonomy, distribution and abundance of Spirogyra (Zygnematophyceae, Charophyta) in Lake Baikal, East Siberia // Phycologia. 2018. V. 57, N 3. P. 298–308.
  10. Holland P.R., Kay A., Botte V. Numerical modelling of the thermal bar and its ecological consequences in a river-dominated lake // J. Mar. Syst. 2003. V. 43, N 1–2. P. 61–81.
  11. Tsvetova E.A. Effect of the Coriolis force on convection in a deep lake: numerical experiment // J. Appl. Mech. Tech. Phys. 1998.V. 39, N 4. P. 593–599.
  12. Malm J. Spring circulation associated with the thermal bar in large temperate lakes // Nord. Hydrol. 1995. V. 26, N 4–5. P. 331–358.
  13. Tsydenov B.O., Kay A., Starchenko A.V. Numerical modeling of the spring thermal bar and pollutant transport in a large lake // Ocean Model. 2016. V. 104. P. 73–83.
  14. Tsydenov B.O. A numerical study of the thermal bar in shallow water during the autumn cooling // J. Great Lakes Res. 2019. V. 45, N 3. P. 715–725.
  15. Tsydenov B.O. Matematicheskaya model' dlya vosproizvedeniya biogeohimicheskih protsessov v presnovodnom ozere // Vestn. Tomsk. gos. un-ta. Matem. i mekh. 2020. N 65. P. 53–67.
  16. Wilcox D.C. Reassessment of the scale-determining equation for advanced turbulence models // AIAA J. 1988. V. 26, N 11. P. 1299–1310.
  17. Aleksandrova M.P., Gulev S.K., Sinitsyn A.V. An improvement of parametrization of short-wave radiation at the sea surface on the basis of direct measurements in the Atlantic // Russ. Meteorol. Hydrol. 2007. V. 32, N 4. P. 245–251.
  18. Hurley P. The air pollution model (TAPM) Version 2. Part 1: technical description, CSIRO Atmospheric Research technical paper 55. 2002. 49 p.
  19. Fasham M.J.R., Ducklow H.W., McKelvie S.M. A nitrogen-based model of plankton dynamics in the oceanic mixed layer // J. Mar. Res. 1990. V. 48, N 3. P. 591–639.
  20. Fennel K., Wilkin J., Levin J., Moisan J., O’Reilly J., Haidvogel D. Nitrogen cycling in the Middle Atlantic Bight: Results from a three-dimensional model and implications for the North Atlantic nitrogen budget // Global Biogeochem. Cycles. 2006. V. 20, N 3. P. GB3007.
  21. Hofmann E., Druon J.-N., Fennel K., Friedrichs M., Haidvogel D., Lee C., Mannino A., McClain C., Najjar R., O’Reilly J., Pollard D., Previdi M., Seitzinger S., Siewert J., Signorini S., Wilkin J. Eastern US continental shelf carbon budget: Integrating models, data assimilation, and analysis // Oceanography. 2008. V. 21, N 1. P. 86–104.
  22. Gan J., Lu Z., Cheung A., Dai M., Liang L., Harrison P.J., Zhao X. Assessing ecosystem response to phosphorus and nitrogen limitation in the Pearl River plume using the Regional Ocean Modeling System (ROMS) // J. Geophys. Res. C: Oceans. 2014. V. 119, N 12. P. 8858–8877.
  23. Eppley R.W. Temperature and phytoplankton growth in the sea // Fish. Bull. 1972. V. 70, N 4. P. 1063–1085.
  24. Olson R.J. Differential photoinhibition of marine nitrifying bacteria: A possible mechanism for the formation of the primary nitrite maximum // J. Mar. Res. 1981. V. 39, N 2. P. 227–238.
  25. Tsydenov B.O., Starchenko A.V. To the selection of heat flux parameterization models at the water-аir interface for the study of the spring thermal bar in a deep lake // Proc. SPIE. 2015. V. 9680. DOI: 10.1117/12.2205687.
  26. Ueno H., Katano T., Nakano S.-I., Mitamura O., Anbutsu K., Satoh Y., Drucker V., Sugiyama M. Abundance and community structure of picoplankton and protists in the microbial food web of Barguzin Bay, Lake Baikal // Aquat. Ecol. 2005. V. 39, N 3. P. 263–270.
  27. Shimaraev M.N., Verbolov V.I., Granin N.G., Sherstyankin P.P. Physical Limnology of Lake Baikal: A review. Irkutsk: Okayama, 1994. 81 p.
  28. Votintsev K.K. Gidrohimiya. V kn.: Problemy Bajkala / pod red. G.I. Galazij, K.K. Votintsev. Novosibirsk, 1978. V. 16, № 36. P. 124–146.