Vol. 34, issue 07, article # 12

Konyaev P. A. Image processing for real-time correction of atmospheric turbulent distortions. // Optika Atmosfery i Okeana. 2021. V. 34. No. 07. P. . DOI: 10.15372/AOO20210712 [in Russian].
Copy the reference to clipboard

Abstract:

Algorithms for real time two-dimensional digital image processing when observing on atmospheric paths are considered. A procedure for measuring the turbulence parameter directly during of observation is suggested. It can be applied both with the use of a reference object (a radial mire), and without it. An efficient high-speed correlation tracking algorithm with reference frame normalization was applied to correct the image jitter caused by the atmosphere. Blurred image restoration algorithms based on the inverse filterization of angular spatial frequencies are implemented with the use of parallel computing procedures from the Intel® MKL and IPP libraries. The results of computer simulation of digital images blur and its correction are presented, as well as examples of processing experimental video frames on real atmospheric paths.

Keywords:

optical-electronic systems, atmospheric turbulence, digital image processing, parallel computational algorithms

References:

  1. Bejts R., Mak-Donnell M. Vosstanovlenie i rekonstruktsiya izobrazhenij. M.: Mir, 1989. 528 p.
  2. Gudmen Dzh. Statisticheskaya optika. M.: Mir, 1988. 528 p.
  3. Huebner C.S., Greco M. Blind deconvolution algorithms for the restoration atmospherically degraded imagery: A comparative analysis // Proc. SPIE. 2008. V. 7108. P. 71080M 1–12.
  4. Huebner C.S. Compensating image degradation due to atmospheric turbulence in anisoplanatic conditions // Proc. SPIE. 2009. V. 7351. P. 735106.
  5. Averin A.P., Morozov Yu.B., Pryanichnikov V.S., Tyapin V.V. Komp'yuternaya korrektsiya turbulentnyh iskazhenij izobrazheniya protyazhennogo ob"ekta na prizemnyh trassah // Kvant. elektron. 2011. V. 41, N 5. P. 475–478.
  6. Dudorov V.V., Nasonova A.S. Sravnenie postdetektornoj korrektsii korotko- i dlinno- ekspozitsionnyh izobrazhenij, sformirovannyh traditsionnymi i mnogoaperturnymi sistemami nablyudeniya v turbulentnoj atmosfere // Optika atmosf. i okeana. 2020. V. 33, N 8. P. 598–603. DOI: 10.15372/AOO20200803; Dudorov V.V., Nasonova A.S. Comparison of postdetection correction of short- and long-exposure images formed by traditional and multiaperture observation systems in a turbulent atmosphere // Atmos. Ocean. Opt. 2020. V. 33, N 6. P. 578–583.
  7. Fried D.L. Optical resolution through a randomly inhomogeneous medium for very long and very short exposures // J. Opt. Soc. Am. 1966. V. 56, N 10. P. 1372–1379.
  8. Gurvich A.S., Kon A.I., Mironov V.L., Hmelevtsov S.S. Lazernoe izluchenie v turbulentnoj atmosfere. M.: Nauka, 1976. 277 p.
  9. Konyaev P.A., Botygina N.N., Antoshkin L.V., Emaleev O.N., Lukin V.P. Ob izmerenii strukturnoj harakteristiki pokazatelya prelomleniya atmosfery passivnymi opticheskimi metodami // Optika atmosf. i okeana. 2015. V. 28, N 8. P. 738–741; Konyaev P.A., Botygina N.N., Antoshkin L.V., Emaleev O.N., Lukin V.P. Passive optical methods in measurement of the structure parameter of the air refractive index // Atmos. Ocean. Opt. 2015. V. 28, N 6. P. 522–525.
  10. Konyaev P.A., Lukin V.P., Botygina N.N., Emaleev O.N. Wavefront sensors for adaptive optical systems // Meas. Sci. Rev. 2010. V. 10, N 3. P. 102–107.
  11. URL: https://software.intel.com/ (last access: 21.03.2021).