Vol. 34, issue 07, article # 10

Volkov M. V., Bogachev V. A., Starikov F. A., Shnyagin R. A. Numerical simulation of dynamical adaptive phase correction of turbulent radiation distortions and estimation of their temporal characteristics with the help of Shack–Hartmann wavefront sensor. // Optika Atmosfery i Okeana. 2021. V. 34. No. 07. P. . DOI: 10.15372/AOO20210710 [in Russian].
Copy the reference to clipboard

Abstract:

The effect of limited operating speed of the adaptive optics system with a Shack–Hartmann wavefront sensor (WFS) on the correction efficiency of dynamical laser beam phase distortions caused by the atmospheric turbulence is numerically studied. Estimation of frequency bandwidth of essential turbulent distortions with the help of WFS has been proposed, which is convenient from a practical point of view.

Keywords:

adaptive optical system, Shack–Hartmann wavefront sensor, phase correction of laser beam, atmospheric turbulence

References:

1. Lukin V.P. Formirovanie opticheskih puchkov i izobrazhenij na osnove primeneniya sistem adaptivnoj optiki // Uspekhi fiz. nauk. 2014. V. 186, N 6. P. 599–640.
2. Kolmogorov A.N. Lokal'naya struktura turbulentnosti v neszhimaemoj zhidkosti pri ochen' bol'shih chislah Rejnol'dsa // Dokl. AN SSSR. 1941. V. 30, N 4. P. 299–303.
3. Taylor G.I. The spectrum of turbulence // Proc. Roy. Soc. 1938. V. A164, N. 919. Р. 476–490.
4. Fried D.L. Optical resolution through a randomly inhomogeneous medium for very long and very short exposures // J. Opt. Soc. Am. 1966. V. 56, N 10. P. 1372–1379.
5. Roddier F. Adaptive optics in astronomy. Cambridge: Cambridge University Press, 1999. 419 p.
6. Hardy J.W. Adaptive optics for astronomical telescopes. N.Y.: Oxford University Press, 1998. 445 p.
7. Greenwood D.P. Bandwidth specification for adaptive optics systems // J. Opt. Soc. Am. 1977. V. 67, N 3, P. 390–393.
8. Fried D.L. Time-delay-induced mean-square error in adaptive optics // J. Opt. Soc. Am. A. 1990. V. 7, N 7. P. 1224–1225.
9. Karr T.J. Temporal response of atmospheric turbulence compensation // Appl. Opt. 1991. V. 30, N 4. P. 363–364.
10. Kandidov V.P. Metod Monte-Karlo v nelinejnoj statisticheskoj optike // Uspekhi fiz. nauk. 1996. V. 166, N 12. P. 1309–1388.
11. Greenwood D.P., Fried D.L. Power spectra requirements for wave-front-compensative systems // J. Opt. Soc. Am. 1976. V. 66, N 3 P. 193–206.
12. Fried D.L. Differential angle of arrival: Theory, evaluation and measurement feasibility // Radio Sci. 1975. V. 10, N 1. P. 71–76.
13. Antoshkin L.V., Botygina N.N., Emaleev O.N., Lavrinova L.N., Lukin V.P. Differentsial'nyj izmeritel' parametrov atmosfernoj turbulentnosti // Optika atmosf. i okeana. 1998. V. 11, N 11. P. 1219–1223.
14. Lukin V.P. Adaptivnaya korrektsiya izobrazheniya nekogerentnogo istochnika-ob"ekta // Kvant. elektron. 2019. V. 49, N 2, P. 162–168.
15. Rukosuev A.L., Belousov V.N., Nikitin A.V., Sheldakova Yu.V., Kudryashov A.V., Bogachev V.A., Volkov M.V., Garanin S.G., Starikov F.A. Bystraya adaptivnaya opticheskaya sistema dlya korrektsii volnovogo fronta lazernogo izlucheniya, iskazhennogo atmosfernoj turbulentnost'yu // Kvant. elektron. 2020. V. 50, N 8, P. 707–709.