Vol. 34, issue 06, article # 12

Khutorova O. G., Khutorov V. E. Parameters of wave processes from GNSS data. // Optika Atmosfery i Okeana. 2021. V. 34. No. 06. P. 458–462. DOI: 10.15372/AOO20210612 [in Russian].
Copy the reference to clipboard

Abstract:

Synoptic spatiotemporal variations with 3–60 day periods are studied based on the remote sensing data from the GLONASS GPS receiver network in 2012–2015. The main modes of synoptic variations are found empirical distributions of their amplitudes, phase velocities, and spatial scales are constructed. The seasonal dependences of these parameters are found. Using independent data from meteorological stations and ERA5 reanalysis, it is shown that variations in radio waves zenith troposphere delay, integral moisture content of the atmosphere, surface refractive index, and wind speed in the troposphere are determined by the same synoptic atmospheric processes. The most probable values of their wavelengths do not exceed 8000 km.

Keywords:

GNSS, GLONASS, GPS, waves in the atmosphere

References:

  1. Antohin P.N., Antohina O.Yu., Devyatova E.V., Martynova Yu.V. Atmosfernye blokingi v Zapadnoj Sibiri. Part II: Dolgovremennye variatsii i ih svyaz' s klimaticheskoj izmenchivost'yu v Azii // Meteorol. i gidrol. 2018. N 3. P. 16–27.
  2. Sukovatov K.Yu., Bezuglova N.N. Interpretatsiya dannyh ob ekstremal'nyh pogodnyh yavleniyah v ramkah gipotezy o kvazirezonansnom mekhanizme formirovaniya blokiruyushchih protsessov// Izv. Altajskogo gos. un-ta. 2018. V. 102, N 4. P. 36–40.
  3. Antohin P.N., Antohina O.Yu., Arshinov M.Yu., Belan B.D., Davydov D.K., Kozlov A.V., Fofonov A.V., Sasakawa M., Machida T. Vliyanie atmosfernogo blokirovaniya v Zapadnoj Sibiri na izmenenie kontsentratsii metana i uglekislogo gaza v zimnij period // Optika atmosf. i okeana. 2019. V. 32, N 3. P. 221–227.
  4. Smyshlyaev S.P., Pogorel'tsev A.I., Galin V.Ya. Vliyanie volnovoj aktivnosti na gazovyj sostav stratosfery polyarnyh rajonov // Geomagnetizm i aeronomiya. 2016. V. 56, N 1. P. 102–116.
  5. Hutorova O.G. Vzaimosvyaz' variatsij prizemnoj kontsentratsii atmosfernyh primesej v dvuh promyshlennyh regionah Tatarstana // Optika atmosf. i okeana. 2004. V. 17, N 5–6. P. 526–529.
  6. Kabanov D.M., Kurbangaliev T.R., Rasskazchikova T.M., Sakerin S.M., Khutorova O.G. Vliyanie sinopticheskih faktorov na variatsii aerozol'noj opticheskoj tolshchi atmosfery v usloviyah Sibiri // Optika atmosf. i okeana. 2011. V. 24, N 8. P. 665–674; Kabanov D.M., Kurbangaliev T.R., Rasskazchikova T.M., Sakerin S.M., Khutorova O.G. the influence of synoptic factors on variations of atmospheric aerosol optical depth under Siberian conditions // Atmos. Ocean. Opt. 2011, V. 24, N 6. P. 543–553.
  7. Hutorova O.G., Hutorov V.E., Teptin G.M. Mezhgodovaya izmenchivost' prizemnogo i integral'nogo vlagosoderzhaniya na territorii Evropy i atmosfernaya tsirkulyatsiya // Optika atmosf. i okeana. 2018. V. 31, N 6. P. 432–437; Khutorova O.G., Khutorov V.E., Teptin G.M. Interannual variability of surface and integrated water vapor and atmospheric circulation in Europe // Atmos. Ocean. Opt. 2018. V. 31, N 5. P. 486–491.
  8. Vargin P.N. Dinamicheskoe vzaimodejstvie stratosfery i troposfery vnetropicheskih shirot v period vnezapnogo stratosfernogo potepleniya v Arktike v yanvare-fevrale 2017 year // Meteorol. i gidrol. 2018. N 5. P. 5–19.
  9. Nesterov E.S. O vliyanii kolebaniya Maddena–Dzhuliana na tsirkulyatsiyu atmosfery vo vnetropicheskih shirotah severnogo polushariya // Gidrometeorol. issledovaniya i prognozy. 2018. N 4. P. 63–73.
  10. Jevrejeva S., Moore J.C., Grinsted A. Oceanic and atmospheric transport of multiyear El Ninõ – Southern Oscillation (ENSO) signatures to the polar regions // Geophys. Res. Lett. 2004. V. 31, N L24210. P. 1–4.
  11. Holton J.R. An Introduction to Dynamic Meteorology. Cambridge, MA: Academic Press, 2004. 535 p.
  12. Kalinnikov V.V., Khutorova O.G. Diurnal variations in integrated water vapor derived from a GPS ground network in the Volga–Ural region of Russia // Ann. Geophys. 2017. V. 35, N 3. P. 453–464.
  13. Hofmann-Wellenhof B., Lichtenegger H., Collins J. Global Positioning System. Theory and Practice. Wien – New York: Springer-Verlag, 1994. 356 p.
  14. Kalinnikov V.V., Hutorova O.G., Teptin G.M. Ispol'zovanie signalov sputnikovyh navigatsionnyh sistem dlya opredeleniya harakteristik troposfery // Izv. RAN. Fizika atmosf. i okeana. 2012. V. 48, N 6. P. 631–638.
  15. Bevis M., Businger S. GPS meteorology: Remote sensing of atmospheric water vapor using the Global Positioning System // J. Geophys. Res. 1992. V. 97, N D14. P. 15787–15801.
  16. Torrence G., Compo G.P. A practical guide to wavelet analysis // Bull. Am. Meteorol. Soc. 1998. V. 79, N 1. P. 61–78.
  17. Dzhenkins G., Vatts D. Spektral'nyj analiz i ego prilozheniya v 2 tt. M.: Mir, 1971. V. 2. 312 p.
  18. Hutorova O.G. Metodika issledovaniya vliyanie planetarnyh voln na variatsii aerozol'noj opticheskoj tolshchiny // Optika atmosf. i okeana. 2009. V. 22, N 4 P. 392–396; Khutorova O.G. A technique for investigating the effects of planetary waves on aerosol optical thickness variations // Atmos. Ocean. Opt. 2009. V. 22, N 2. P. 198–202.
  19. Hersbach H., Bell B., Berrisford P., Biavati G., Horányi A., Muñoz Sabater J., Nicolas J., Peubey C., Radu R., Rozum I., Schepers D., Simmons A., Soci C., Dee D., Thépaut J.-N. (2018): ERA5 hourly data on pressure levels from 1979 to present. Copernicus Climate Change Service (C3S) Climate Data Store (CDS) [Electronic resource]. URL: https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-pressure-levels?tab=overview (last access: 17.12.2019).
  20. Leman E. Proverka statisticheskih gipotez. M.: Nauka, 1979. 408 p.
  21. Bulygina O.N., Veselov V.M., Razuvaev V.N., Aleksandrova T.M. Opisanie massiva srochnyh dannyh ob osnovnyh meteorologicheskih parametrah na stantsiyah Rossii. Svidetel'stvo o gosudarstvennoj registratsii bazy dannyh N 2014620549 [Electronic resource]. URL: http://meteo.ru/data/163-basic-parameters#opisanie-massiva-dannyh (data obrashcheniya 15.11.2020).
  22. Madden R.A. Large-scale, free Rossby waves in the atmosphere – an update // Tellus. 2007. V. 59A. P. 571–590.
  23. Jiang Z., Feldstein S.B., Lee S. The relationship between the Madden–Julian oscillation and the North Atlantic oscillation // Q. J. R. Meteorol. Soc. 2017. V. 143, N 702. P. 240–250.
  24. Gill A. Dinamika atmosfery i okeana: v 2 tt. M.: Mir, 1986. 415 p.
  25. Monin A.S. Prognoz pogody kak zadacha fiziki. M.: Nauka, 1969. 184 p.
  26. Diky L.A., Golitsyn G.S. Calculation of the Rossby wave velocities // Tellus. 1968. V. 20, N 1. P. 314–317.
  27. Vul'fson A.N. Opisanie krupnomasshtabnyh dvizhenij srednego urovnya atmosfery i voln Rossbi v priblizhenii teorii konvektsii // Izv. AN SSSR. Fizika atmosf. i okeana, 1989. V. 25, N 4. P. 356–366.
  28. Gur'yanov V.V., Eliseev A.V., Mohov I.I., Perevedentsev Yг.P. Volnovaya aktivnost' i ee izmeneniya v troposfere i stratosfere severnogo polushariya zimoj v 1979–2016 years // Izv. RAN. Fizika atmosf. i okeana. 2018. V. 54, N 2. P. 133–146.
  29. Chang E. The structure of baroclinic wave packets // J. Atmos. Sci. 2001. V. 58. P. 16941713.
  30. Vargin P.N, Luk'yanov A.N., Gan'shin A.V. Issledovanie dinamicheskih protsessov v period formirovaniya i razvitiya blokiruyushchego antitsiklona nad evropejskoj chast'yu Russia letom 2010 year // Izv. RAN. Fizika atmosf. i okeana. 2012. V. 48, N 5. P. 537–557.