Vol. 34, issue 05, article # 6

Bukin O. A., Maior A. Yu., Proschenko D. Yu., Golik S. S., Lisitsa V. V., Korovetskiy D. A., Ilin A. A. Comparison of methods for multielement analysis of the composition of water aerosol based on spectral analysis of laser plasma. // Optika Atmosfery i Okeana. 2021. V. 34. No. 05. P. 352–357. DOI: 10.15372/AOO20210506 [in Russian].
Copy the reference to clipboard

Abstract:

Experimental results of comparison of two methods of multielement analysis of liquid-droplet aerosol based on spectral analysis of laser plasma radiation are presented. The features of the emission spectra of laser plasma arising as a result of laser breakdown (LIBS method) and of filamentation (R-FIBS method) in liquid droplet aerosol are investigated. A liquid-drop aerosol containing a Na solution is used. The experiments were carried out to determine the optimal use of the methods on mobile platforms.
It is shown that, for both methods, there are optimal delay times of the start of signal registration relative to the start of plasma generation, at which the maximal signal-to-noise ratio is observed. The magnitude of these delays differs by three orders of magnitude when going from nanosecond to femtosecond pulses. For the LIBS method, the dependence of the signal-to-noise ratio was obtained for various focusing of laser radiation deep into the liquid-droplet cloud. The values of the Na limit of detection for both methods are determined.

Keywords:

aerosol, laser spectroscopy, plasma, filamentation, limits of detection

References:

  1. Becker A., Aközbek N., Vijayalakshmi K., Oral E., Bowden C.M., Chin S.L. Intensity clamping and re-focusing of intense femtosecond laser pulses in nitrogen molecular gas // Appl. Phys. B. 2001. V. 73, N 3. P. 287–290.
  2. Apeksimov D.V., Gejnts Yu.E., Zemlyanov A.A., Kabanov A.M., Matvienko G.G., Stepanov A.N., Zaharov N.S., Holod S.V. Rasprostranenie moshchnogo ul'trakorotkogo lazernogo impul'sa na gorizontal'noj atmosfernoj trasse // Optika atmosf. i okeana. 2009. V. 22, N 11. P. 1035–1041; Apeksimov D.V., Geints Yu.E., Zemlyanov A.A., Kabanov A.M., Matvienko G.G., Stepanov A.N., Zakharov N.S., Kholod S.V. Propagation of a high-power ultrashort laser pulse along a horizontal atmospheric path // Atmos. Ocean. Opt. 2010. V. 23, N 1. P. 14–20.
  3. Kremers D., Radzievski L. Lazerno-iskrovaya spektroskopiya. M.: Tekhnosfera, 2009. 370 p.
  4. Musazzi S., Perini U. Laser-Induced Breakdown Spectroscopy. Theory and Applications. Berlin: Springer, 2014. 554 p.
  5. Messaoud Aberkane S., Safi A., Botto A., Campanella B., Legnaioli S., Poggialini F., Raneri S., Rezaei F., Palleschi V. Laser-induced breakdown spectroscopy for determination of spectral fundamental parameters // Appl. Sci. 2020. V. 10, N 14. P. 4973.
  6. Shah H., Kifayat S., Iqbal J., Ahmad P., Mayeen Uddin K., Sirajul H., Muhammad N. Laser induced breakdown spectroscopy methods and applications: A comprehensive review // Radiat. Phys. Chem. 2020. V. 170. P. 108666.
  7. Legnaioli S., Campanella B., Poggialini F., Pagnotta S., harith M.A., Adbel-Salam Z.A., Pallescghi V. Industrial applications of laser-induced breakdown spectroscopy: a review // Anal. Methods. 2020. V. 12, N 8. P. 1014–1029.
  8. Kuznetsov S.A., Pivtsov V.S. Vysokoeffektivnyj kompaktnyj Yb:KYW-lazer dlya pretsizionnyh mobil'nyh sistem // Kvant. elektron. 2014. V. 44, N 5. P. 444–447.
  9. Théberge F., Liu W., Simard P.Tr., Becker A., Chin S.L. Plasma density inside a femtosecond laser filament in air: Strong dependence on external focusing // Phys. Rev. 2006. V. 74, N 3. P. 036406-1–036406-7.
  10. Talebpour A., Abdel-Fattah M., Chin S.L. Focusing limits of intense ultrafast laser pulses in a high pressure gas: road to new spectroscopic source // Opt. Commun. 2000. V. 183, N 5–6. P. 479.
  11.   Kasparian J., Sauerbrey R., Chin S. L. The critical laser intensity of self-guided light filaments in air // Appl. Phys. B. 2000. V. 71, N 6. P. 877–879. 
  12. Zhang D.C., Hu Z.Q., Su Y.B., Hai B., Zhu X.L., Zhu J.F., Ma X. Simple method for liquid analysis by laser-induced breakdown spectroscopy (LIBS) // Opt. Express. 2018. V. 26, iss. 14. P. 18794–18802.
  13. Daigle J.-F., Méjean G., Liu W., Théberge F., Xu H.L., Kamali Y., Bernhardt J., Azarm A., Sun Q., Mathieu P., Roy G., Simard J.-R., Chin S.L. Long range trace detection in aqueous aerosol using remote filament-induced breakdown spectroscopy // Appl. Phys. 2007. V. 87, N 4. P. 749–754.
  14. Daigle J.-F., Mathieu P., Roy G., Simard J.-R., Chin S.L. Multi-constituents detection in contaminated aerosol clouds using remote-filament-induced breakdown spectroscopy // Opt. Commun. 2007. V. 278, N 1. P. 147–152.
  15. Xu H.L., Liu W., Chin S.L. Remote time-resolved filament-induced breakdown spectroscopy of biological materials // Opt. Lett. 2006. V. 31, N 10. P. 1540–1542.
  16. Hahn D.W., Lunden M.M. Detection and analysis of aerosol particles by laser-induced breakdown spectroscopy // Aerosol Sci. Technol. 2000. V. 33, N 1. P. 30–48.