Vol. 34, issue 04, article # 2

Starikov V. I., Mikhailenko S. N. Nonpolynomial representation of N2-, O2-, air-, and self-broadening coefficients of ozone lines. // Optika Atmosfery i Okeana. 2021. V. 34. No. 04. P. 245–253. DOI: 10.15372/AOO20210402 [in Russian].
Copy the reference to clipboard

Abstract:

The parameters of a nonpolynomial analytical model γ (sur) are determined from the fitting of the known experimental data on the N2-, O2-, air-, and self-broadening coefficients of the ozone absorption lines. The model gives a finite value for the coefficients γ in asymptotic. The average accuracy of experimental data description is better than 3% for several thousand lines with quantum numbers up to J = 60. The results of the calculations based on the model suggested are compared to the results obtained using polynomial representations for the broadening coefficients.

Keywords:

ozone molecule, spectral line broadening, nonpolynomial representation

References:

1. Mihajlenko S.N. Issledovanie infrakrasnyh spektrov pogloshcheniya molekuly ozona s 2000 po 2015 year // Optika atmosf. i okeana. 2015. V. 28, N 7. P. 587–607.
2. Smith M.A.H., Rinsland C.P., Devi V.M. Measurements of self-broadening of infrared absorption lines of ozone // J. Mol. Spectrosc. 1991. V. 147, N 1. P. 142–154.
3. Wagner G., Birk M., Schreier F, Flaud J.-M. Spectroscopic database for ozone in the fundamental spectral regions // J. Geophys. Res. 2002. V. 107, N D22. 4626. P. 10-1–18.4. Buldyreva J, Lavrent’eva N.N., Starikov V.I. Collisional Line Broadening and Shifting of Atmosphyric Gase. A practical Guide for Line Shape Modeling by Current Semi-classical Approaches. London: Imperial College Press, 2010. 292 p.
5. Starikov V.I. Analiticheskoe predstavlenie dlya koeffitsientov ushireniya linij pogloshcheniya ozona davleniem kisloroda, vozduha i sobstvennym davleniem // Optika atmosf. i okeana. 2006. V. 19, N 8. P. 708–712.
6. Starikov V.I. Vychislenie i analiticheskoe predstavlenie koeffitsientov ushireniya spektral'nyh linij ozona sobstvennym davleniem i davleniem vozduha // Opt. i spektroskop. 2011. V. 110, N 3. P. 374–384.
7. Claveau C. Temperature dependence of nitrogen and oxygen-broadening of the 16O3 ν1 band // Mol. Phys. 2011. V. 109, N 12. P. 1599–1606.
8. Larsen R.W, Nicolaisen F.M., Sørensen G.O. Determination of self-, air-, and oxygen-broadening coefficients of pure rotational absorption lines of ozone and of their temperature dependencies // J. Mol. Spectrosc. 2001. V. 210, N 2. P. 259–270.
9. Priem D., Colmont J.M., Rohart F., Wlodarczak G., Gamache R.R. Relaxation and lineshape of the 500.4-GHz line of ozone perturbed by N2 and O2 // J. Mol. Spectrosc. 2000. V. 204, N 2. P. 204–215.
10. Rohart F., Wlodarczak G., Colmont J.M., Cazzoli G., Dore L,, Puzzarini C. Galatry versus speed-dependent Voigt profiles for millimeter lines of O3 in collision with N2 and O2 // J. Mol. Spectrosc. 2008. V. 251, N 1–2. P. 282–292.
11. Colmont J.M., Bakri B., Rohart F., Wlodarczak G., Demaison J., Cazzoli G., Dore L., Puzzarini C. Intercomparison between ozone-broadening parameters retrieved from millimetre-wave measurements by using different techniques // J. Mol. Spectrosc. 2005. V. 231, N 2. P. 171–187.
12. Yamada M.M., Amano T. Pressure broadening measurement of submillimeter-wave lines of O3 // J. Quant. Spectrosc. Radiat. Transfer. 2005. V. 95, N 2. P. 221–230.
13. Margolis J.S. N2 broadening parameters of ozone at 9.6 mm // J. Quant. Spectrosc. Radiat. Transfer. 1983. V. 29, N 6. P. 539–542.
14. Hoell J.M., Harward C.N., Bair C.H., Williams B.S. Ozone air broadening coefficients in the 9 μm region // Proc. SPIE. 1981. DOI: 10.1117/12.932072.
15. Bouazza S., Barbe A., Plateaux J.J., Rosenmann L., Hartmann J.M., Camy-Peyret C., Flaud J.M., Gamache R.R. Measurements and calculations of room-temperature ozone line-broadening by N2 and O2 in the ν1 + ν3 band // J. Mol. Spectrosc. 1993. V. 157, N 2. P. 271–289.
16. Barbe A., Regalia L., Plateaux J.J., von der Heyden P., Tomas X. Temperature dependence of N2 and O2 broadening coefficients of ozone // J. Mol. Spectrosc. 1996. V. 180, N 1. P. 175–182.
17. Drouin B.J., Gamache R.R. Temperature dependent air-broadened linewidths of ozone rotational transitions // J. Mol. Spectrosc. 2008. V. 251, N 1–2. P. 194–202.
18. Drouin B.J., Fischer J., Gamache R.R. Temperature dependent pressure induced lineshape of O3 rotational transitions in air // J. Quant. Spectrosc. Radiat. Transfer. 2004. V. 83, N 1. P. 63–81.
19. Devi V.M., Benner D.C., Smith M.A.H., Rinsland C.P. Air-broadening and shift coefficients of O3 lines in the ν2 band and their temperature dependence // J. Mol. Spectrosc. 1997. V. 182, N 2. P. 221–238.
20. Smith M.A.H., Devi V.M., Benner D.C., Rinsland C.P. Temperature dependence of air-broadening and shift coefficients of O3 lines in the ν1 band // J. Mol. Spectrosc. 1997. V. 182, N 2. P. 239–259.
21. Meunier C., Marche P., Barbe A. Intensities and air broadening coefficients of O3 in the 5- and 3-μm regions // J. Mol. Spectrosc. 1982. V. 95, N 2. P. 271–275.
22. Lynch R., Gamache R.R., Neshyba S.P. Fully complex implementation of the Robert-Bonamy formalism: Half widths and line shifts of H2O broadened by N2 // J. Chem. Phys. 1996. V. 105, N 14. P. 5711–5721.
23. Guinet M., Mondelain D., Janssen C., Camy-Peyret C. Laser spectroscopic study of ozone in the 100 ← 000 band for the SWIFT instrument // J. Quant. Spectrosc. Radiat. Transfer. 2010. V. 111, N 7–8. P. 961–972.