Vol. 34, issue 03, article # 6

Tkachev I. V., Timofeev D. N., Kustova N. V., Konoshonkin A. V. Databank of Mueller matrices on atmospheric ice crystals of 10–100 mm for interpretation of ground-based and space-borne lidar data. // Optika Atmosfery i Okeana. 2021. V. 34. No. 03. P. 199–206. DOI: 10.15372/AOO20210306 [in Russian].
Copy the reference to clipboard


Solution to the problem of light scattering by hexagonal atmospheric plates and columns and irregularly shaped particles 10 to 100 mm in size is presented in the form of a databank of Mueller matrices. It is intended for interpretation of data from ground-based and space-borne lidars. The solution is obtained for typical wavelengths used in laser sensing: 0.355; 0.532; 1.064 mm, as well as for the wavelengths of the near-IR region: 1.55; 2 and 2.15 mm. The solution was derived with the use of the physical optics method. Based on the Mueller matrices calculated, the color and linear depolarization ratios were derived.


light scattering, absorption, ice particles, cirrus clouds, laser sensing, lidar



  1. Um J., McFarquhar G.M., Hong Y.P., Lee S.-S., Jung C.H., Lawson R.P., Mo Q. Dimensions and aspect ratios of natural ice crystals // Atmos. Chem. Phys. 2015. V. 15. P. 3933–3956.
  2. Baran A.J., Watts P.D., Foot J.S. Potential retrieval of dominating crystal habit and size using radiance data from a dual-view and multiwavelength instrument: A tropical cirrus anvil case // J. Geophys. Res. 1998. V. 103. P. 6075–6082.
  3. Sun W.B., Loeb N.G., Yang P. On the retrieval of ice cloud particle shapes from POLDER measurements // J. Quant. Spectrosc. Radiat. Transfer. 2006. V. 101. P. 435–447.
  4. Noel V., Sassen K. Study of planar ice crystal orientations in ice clouds from scanning polarization lidar observations // J. Appl. Meteorol. 2005. V. 44. P. 653–664.
  5. Okamoto H., Sato K., Hagihara Y. Global analysis of ice microphysics from Cloud Sat and CALIPSO: Incorporation of specular reflection in lidar signals // J. Geophys. Res. D. 2010. V. 115. P. D22209.
  6. Intergovernmental Panel // Climate Change 2007. The Physical Science Basis. Cambridge: Cambridge University Press, 2007.
  7. Liou K.N. Influence of cirrus clouds on the weather and climate process: A global perspective // Mon. Weather Rev. 1986. V. 114. P. 1167–1199.
  8. Cai Q., Liou K.N. Polarized light scattering by hexagonal ice crystals: Theory // Appl. Opt. 1982. V. 21. P. 3569–3580.
  9. Macke A. Scattering of light by polyhedral ice crystals // Appl. Opt. 1993. V. 32. P. 2780–2788.
  10. Yang P., Liou K.N. Light scattering by hexagonal ice crystals: Comparison of finite-difference time domain and geometric optics models // J. Opt. Soc. Am. A. 1995. V. 12. P. 162–176.
  11. Bi L., Yang P., Kattawar G.W., Hu Y., Baum B.A. Scattering and absorption of light by ice particles: Solution by a new physical-geometric optics hybrid method // J. Quant. Spectrosc. Radiat. Transfer. 2011. V. 112. P. 1492–1508.
  12. Yang P., Bi L., Baum B.A., Liou K.-N., Kattawar G.W., Mishchenko M.I., Cole B. Spectrally consistent scattering, absorption, and polarization properties of atmospheric ice crystals at wavelengths from 0.2 to 100 mm // J. Atmos. Sci. 2013. V. 70, N 1. P. 330–347.
  13. Cole B.H., Yang P., Baum B.A., Riedi J., Labonnote L.C., Thieuleux F., Platnick S. Comparison of PARASOL observations with polarized reflectances simulated using different ice habit mixtures // J. Appl. Meteorol. Climatol. 2013. V. 52, N 1. P. 186–196.
  14. Wang Z., Shishko V., Kustova N., Konoshonkin A., Timofeev D., Xie C., Liu D., Borovoi A. Radar-lidar ratio for ice crystals of cirrus clouds // Opt. Express. 2021 (in press). DOI: 10.1364/OE.410942.
  15. Konoshonkin A., Borovoi A., Kustova N., Reichardt J. Power laws for backscattering by ice crystals of cirrus clouds // Opt. Express. 2017. V. 25, N 19. P. 22341–22346.
  16. Konoshonkin A.V., Kustova N.V., Borovoi A.G., Grynko Y., Förstner J. Light scattering by ice crystals of cirrus clouds: Comparison of the physical optics methods // J. Quant. Spectrosc. Radiat. Transfer. 2016. V. 182. P. 12–23.
  17. Bi L., Yang P. Physical-geometric optics hybrid methods for computing the scattering and absorption properties of ice crystals and dust aerosols // Light Scattering Rev. 8. Chichester: Springer-Praxis, 2013. P. 69–114.
  18. Yang P., Liou K.N. Geometric-optics–integral-equation method for light scattering by nonspherical ice crystals // Appl. Opt. 1996. V. 35. P. 6568–6584.
  19. Konoshonkin A.V., Kustova N.V., Borovoj A.G. Algoritm trassirovki puchkov dlya zadachi rasseyaniya sveta na atmosfernyh ledyanyh kristallah. Part 1. Teoreticheskie osnovy algoritma // Optika atmosf. i okeana. 2015. V. 28, N 4. P. 324–330; Konoshonkin A.V., Kustova N.V., Borovoi A.G. Beam splitting algorithm for the problem of light scattering by atmospheric ice crystals. Part 1. Theoretical foundations of the algorithm // Atmos. Ocean. Opt. 2015. V. 28, N 5. P. 441–447.
  20. Bi L., Yang P. Modeling of light scattering by biconcave and deformed red blood cells with the invariant imbedding T-matrix method // J. Biomed. Opt. 2013. V. 18, N 5. DOI: 10.1117/1.JBO.18.5.055001.
  21. Liu C., Bi L., Panetta R.L., Yang P., Yurkin M.A. Comparison between the pseudo-spectral time domain method and the discrete dipole approximation for light scattering simulations // Opt. Express. 2012. V. 20, N 15. P. 16763–16776.
  22. Liu C., Panetta R.L., Yang P. The effective equivalence of geometric irregularity and surface roughness in determining particle single-scattering properties // Opt. Express. 2014. V. 22. P. 23620–23627.
  23. Shishko V.A., Konoshonkin A.V., Kustova N.V., Timofeev D.N., Borovoi A.G. Coherent and incoherent backscattering by a single large particle of irregular shape // Opt. Express. 2019. V. 27, N 23. P. 32984–32993.
  24. The Earth Cloud Aerosol and Radiation Explorer (EarthCARE) [Electronic resource]. URL: https://www.esa.int/Applications/Observing_the_Earth/The_Living_Planet_Programme/Earth_Explorers/EarthCARE/ESA_s_cloud_aerosol_and_radiation_mission (last access: 20.01.2021).
  25. Okamoto H., Sato K., Borovoi A., Ishimoto H., Masuda K., Konoshonkin A., Kustova N. Wavelength dependence of ice cloud backscatter properties for space-borne polarization lidar applications // Opt. Express. 2020. V. 28, N 20. DOI: 10.1364/oe.400510.
  26. Okamoto H., Sato K., Borovoi A., Ishimoto H., Masuda K., Konoshonkin A., Kustova N. Interpretation of lidar ratio and depolarization ratio of ice clouds using spaceborne high-spectral-resolution polarization lidar // Opt. Express. 2019. V. 27, N 25. DOI: 10.1364/oe.27.036587.
  27. Timofeev D.N., Konoshonkin A.V., Kustova N.V. Algoritm Modified beam-splitting 1 (MBS-1) dlya resheniya zadachi rasseyaniya sveta na nevypuklyh ledyanyh atmosfernyh chastitsah // Optika atmosf. i okeana. 2018. V. 31, N 6. P. 473–480. DOI: 10.15372/AOO20180609; Timofeev D.N., Konoshonkin A.V., Kustova N.V. Modified beam-splitting 1 (MBS-1) algorithm for solving the problem of light scattering by nonconvex atmospheric ice particles // Atmos. Ocean. Opt. 2018. V. 31, N 6. P. 642–649.
  28. Konoshonkin A.V., Kustova N.V., Borovoi A.G. Beam-splitting code for light scattering by ice crystal particles within geometric-optics approximation // J. Quant. Spectrosc. Radiat. Transfer. 2015. V. 164. P. 175–183.
  29. Mishchenko M.I., Hovenier J.W., Travis L.D. Light Scattering by Nonspherical Particles: Theory, Measurements, and Geophysical Applications. San Diego: Academic Press, 1999. 690 p.
  30. Balin Yu.S., Kaul' B.V., Kohanenko G.P. Nablyudenie zerkal'no otrazhayushchih chastits i sloev v kristallicheskih oblakah // Optika atmosf. i okeana. 2011. V. 25, N 4. P. 293–299.
  31. Samohvalov I.V., Kaul' B.V., Nasonov S.V., Zhivotenyuk I.V., Bryuhanov I.D. Matritsa obratnogo rasseyaniya sveta zerkal'no otrazhayushchih sloev oblakov verhnego yarusa, obrazovannyh kristallicheskimi chastitsami, preimushchestvenno orientirovannymi v gorizontal'noj ploskosti // Optika atmosf. i okeana. 2012. V. 25, N 5. P. 403–411.
  32. Kaul' B.V., Samohvalov I.V. Fizicheskie faktory, opredelyayushchie prostranstvennuyu orientatsiyu chastits kristallicheskih oblakov // Optika atmosf. i okeana. 2008. V. 21, N 1. P. 27–34.
  33. Kaul' B.V., Samohvalov I.V. Orientatsiya chastits kristallicheskih oblakov Ci: Part 1. Orientatsiya pri padenii // Optika atmosf. i okeana. 2005. V. 18, N 11. P. 963–967.
  34. Del Guasta M., Vallar E., Riviere O., Castagnoli F., Venturi V., Morandi M. Use of polarimetric lidar for the study of oriented ice plates in clouds // Appl. Opt. 2006. V. 45. P. 4878–4887.
  35. Konoshonkin A.V., Kustova N.V., Shishko V.A., Borovoi A.G. Metodika resheniya zadachi rasseyaniya sveta na ledyanyh kristallah peristyh oblakov v napravlenii rasseyaniya nazad metodom fizicheskoj optiki dlya lidara s zenitnym skanirovaniem // Optika atmosf. i okeana. 2016. V. 29, N 1. P. 40–50; Konoshonkin A.V., Kustova N.V., Shishko V.A., Borovoi A.G. The technique for solving the problem of light backscattering by ice crystals of cirrus clouds by the physical optics method for a lidar with zenith scanning // Atmos. Ocean. Opt. 2016. V. 29, N 3. P. 252–262.
  36. Esselborn M., Wirth M., Fix A., Weinzierl B., Rasp K., Tesche M., Petzold A. Spatial distribution and optical properties of Saharan dust observed by airborne high spectral resolution lidar during SAMUM 2006 // Tellus B. 2009. V. 61, N 1. P. 131–143. DOI: 10.1111/j.1600-0889.2008.00394.x.
  37. Ansmann A., Petzold A., Kandler K., Tegen I., Wendisch M., Müller D., Weinzierl B., Müller T., Heintzenberg J. Saharan Mineral Dust Experiments SAMUM-1 and SAMUM-2: What have we learned? // Tellus B. 2011. V. 63, N 4. P. 403–429. DOI: 10.1111/j.1600-0889.2011.00555.x.
  38. Tsekeri A., Freudenthaler V., Doxastakis G., Gasteiger J., Louridas A., Georgoussis G., Binietoglou I., Georgiou T., Ulanowski Z., Amiridis V. Polarization lidar for detecting dust orientation // EPJ Web Conf. 2020. V. 237. DOI: 10.1051/epjconf/202023702028.
  39. Wiegner M., Groß S., Freudenthaler V., Toledano C., Tesche M., Kandler K. Modelling lidar-relevant optical properties of complex mineral dust aerosols // Tellus B. 2011. V. 63, N 4. P. 725–741.
  40. Ван де Хюлст Г. Рассеяние света малыми частицами. М.: Изд-во иностр. лит-ры, 1961. 537 p.
  41. Kustova N.V. Metody geometricheskoj i fizicheskoj optiki v zadache rasseyaniya sveta atmosfernymi ledyanymi kristallami // pod red. A.G. Borovogo. Tomsk: Izdatel'skij dom Tom. gos. un-ta, 2020. 138 p.
  42. Konoshonkin A.V., Borovoj A.G., Kustova N.V., Shishko V.A., Timofeev D.N. Rasseyanie sveta na atmosfernyh ledyanyh kristallah v priblizhenii fizicheskoj optiki. Novosibirsk: Izd-vo SO RAN, 2020. 219 p.
  43. Auer A.H., Veal D.L. The dimension of ice crystals in natural clouds // J. Atmos. Sci. 1970. V. 29. P. 311–317.
  44. Mitchell D.L., Arnott W.P. A model predicting the evolution of ice particle size spectra and radiative properties of cirrus clouds. Part II: Dependence of absorption and extinction on ice crystal morphology // J. Atmos. Sci. 1994. V. 51. P. 817–832.
  45. Konoshonkin A.V., Kustova N.V., Borovoi A.G., Okamoto H. Coherent and incoherent additions of light beams at solutions of the light scattering problem by use the beam tracing method within the framework of physical optics // Proc. SPIE. 2015. V. 9680. DOI: 10.1117/12.2204879.
  46. Tao Z., McCormick M.P., Wu D., Liu Z., Vaughan M.A. Measurements of cirrus cloud backscatter color ratio with a two-wavelength lidar // Appl. Opt. 2008. V. 47, N 10. P. 1478. DOI: 10.1364/ao.47.001478.
  47. Vaughan M.A., McGill M.J., Liu Z., Hu Y., Kuehn R.E., Rodier S.D. Backscatter color ratios of cirrus clouds measured by the Cloud Physics Lidar // Proc. 15th Int. Conf. on Clouds and Precipitation, Cancun, Mexico. 2008. P. 13–16.