Vol. 34, issue 03, article # 1

Petrova T. M., Solodov A. M., Shcherbakov A. P., Dеichuli V. M., Solodov A. A., Ponomarev Yu. N. Comparison of profile models for water vapor absorption lines. // Optika Atmosfery i Okeana. 2021. V. 34. No. 03. P. 159–163. DOI: 10.15372/AOO20210301 [in Russian].
Copy the reference to clipboard

Abstract:

The absorption spectra of a water molecule perturbed by argon pressure were measured in the 6700–7650 cm-1 region. The spectra were recorded at an IFS 125HR Fourier spectrometer with a high signal-to-noise ratio at a room temperature with a spectral resolution of 0.01 cm-1. The argon pressure was varied from 0 to 0.9 atm. Using three models of the line profile (the traditional Voigt profile, the quadratic Voigt profile depending on the velocity of the absorbing molecule, and the Hartmann–Tran profile), the parameters of the absorption lines of the water molecule were obtained. It is shown that the use of the HTP profile gives better agreement with the experimental data. For mass measurements at pressures above 300 mbar, it is suggested to use a relatively simple Voigt profile which depends on the velocity of the absorbing molecule.

Keywords:

absorption line profile, water molecule, Fourier spectrometry

References:

1. Hartmann J.-M., Boulet C., Robert D. Collisional effects on molecular spectra. Laboratory experiments and models, consequences for applications. Amsterdam: Elsevier, 2008. 432 p.
2. Ngo N.H., Lisak D., Tran H., Hartmann J.-M. An isolated line-shape model to go beyond the Voigt profile in spectroscopic databases and radiative transfer codes // J. Quant. Spectrosc. Radiat. Transfer. 2013. V. 129. P. 89–100.
3. Kiemle C., Quatrevalet M., Ehret G., Amediek A., Fix A., Wirth M. Sensitivity studies for a space-based methane lidar mission // Atmos. Meas. Tech. 2011. V. 4. P. 2195–211.
4. Buchwitz M., Reuter M., Bovensmann H., Pillai D., Heymann J., Schneising O., Rozanov V., Krings T., Burrows J.P., Boesch H., Gerbig C., Meijer Y., Löscher A. Carbon monitoring satellite (CarbonSat): Assessment of atmospheric CO2 and CH4 retrieval errors by error parameterization // Atmos. Meas. Tech. 2013. V. 6. P. 3477–500.
5. Tennyson J., Bernath P.F., Campargue A., Császár A.G., Daumont L., Gamache R.R., Lisak D., Naumenko O.V., Rothman L.S, Tran H., Zobov N.F., Buldyreva J., Boone C.D., De Vizia M.D., Gianfrani L., Hartmann J.-M., McPheat R., Weidmann D., Murray J., Ngo N.H., Polyansky O.L. Recommended isolated-line profile for representing high-resolution spectroscopic transitions (IUPAC technical report) // Pure Appl. Chem. 2014. V. 86. P. 1931–1943.
6. Gordon I.E., Rothman L.S., Hill C., Kochanov R.V., Tana Y., Bernath P.F., Birk M., Boudon V., Campargue A., Chance K.V., Drouin B.J., Flaud J.-M., Gamache R.R., Hodges J.T., Jacquemart D., Perevalov V.I., Perrin A., Shine K.P., Smith M.-A.H., Tennyson J., Toon G.C., Tran H., Tyuterev V.G., Barbe A., Császár A.G., Devi V.M., Furtenbacher T., Harrison J.J., Hartmann J.-M., Jolly A., Johnson T.J., Karman T., Kleiner I., Kyuberis A.A., Loos J., Lyulin O.M., Massie S.T., Mikhailenko S.N., Moazzen-Ahmadi N., Müller H.S.P., Naumenko O.V., Nikitin A.V., Polyansky O.L., Rey M., Rotger M., Sharpe S.W., Sung K., Starikova E., Tashkun S.A., Vander Auwera J., Wagner G., Wilzewski J., Wcisło P., Yu S., E. Zak E.J. The HITRAN2016 molecular spectroscopic database // J. Quant. Spectrosc. Radiat. Transfer. 2017. V. 203. P. 3–69.
7. Ponomarev Yu.N., Solodov A.A., Solodov A.M., Petrova T.M., Naumenko O.V. FTIR spectrometer with 30 m optical cell and its applications to the sensitive measurements of selective and nonselective absorption spectra // J. Quant. Spectrosc. Radiat. Transfer. 2016. V. 177. P. 253–260.
8. Shcherbakov A.P., Protasevich A.E. Programma dlya avtomaticheskogo poiska i podgonki linij v spektrah // Fond algoritmov i programm SO RAN. Svidetel'stvo o registratsii programmy N PR13002 ot 26.03.2013. Pravoobladatel': IOA SO RAN (RU).
9. Shcherbakov A.P., Pshenichnicov A.M. Computer-aided system for automatic peak searching and contour fitting in molecular spectra // Proc. SPIE. 2000. N 4341. P. 60–63.
10. Kruglova T.V., Shcherbakov A.P. Avtomaticheskij poisk linij v molekulyarnyh spektrah na osnove metodov neparametricheskoj statistiki. Regulyarizatsiya v otsenke parametrov spektral'nyh linij // Opt. i spektroskop. 2011. V. 111, N 3. P. 383–386.
11. Levin L.L. Vvedenie v teoriyu raspoznavaniya obrazov: Uch. posobie. Tomsk: TGU. 1982, 2004, 2008, 97 p.
12. Ajzerman M.A., Braverman E.I., Rozonoer L.I. Metod potentsial'nyh funktsij v zadachah obucheniya mashin. M.: Nauka, 1970. 384 p.
13. Boone C.D. Speed-dependent Voigt profile for water vapor in infrared remote sensing applications // J. Quant. Spectrosc. Radiat. Transfer. 2007. V. 105. P. 525–532.