Vol. 33, issue 12, article # 6

Zhuravleva T. B. Simulation of solar radiation brightness fields in the presence of optically anisotropic crystal clouds: algorithm and test results. // Optika Atmosfery i Okeana. 2020. V. 33. No. 12. P. 937–943. DOI: 10.15372/AOO20201206 [in Russian].
Copy the reference to clipboard


An original algorithm for statistical of the solar radiation transfer in the presence of crystal clouds, optically anisotropic with respect to the zenith angle of the incident radiation, is presented. Examples of preliminary calculated local optical characteristics of clouds consisting of horizontally oriented plates (without taking into account internal absorption) are given. The software developed was tested in two numerical experiments. In the first of them, the results of calculations of reflected radiation for an isotropic medium with the use the previously developed algorithm for clouds consisting of chaotically oriented particles and the algorithm presented in this work were compared. In the second experiment the angular dependence of the upward radiation intensity and the phase scattering function in crystal clouds consisting of horizontally oriented plates is compared. The results of numerical experiments indicate that when simulating radiation transfer using this algorithm, the properties of the optical anisotropy of the medium are adequately taken into account.


radiation transfer, Monte Carlo method, optical anisotropy, horizontally oriented plates


  1. Ono A. The shape and riming properties of ice crystals in natural clouds // J. Atmos. Sci. 1969. V. 26, N 1. P. 138–147.
  2. Greenler R.G., Mallmann A.J., Drinkwine M., Blumenthal G. The origin of sunpillars // Am. Sci. 1972. V. 60. P. 292–302.
  3. Sassen K. Remote sensing of planar ice crystals fall attitude // J. Meteorol. Soc. Jpn. 1980. V. 58, N 5. P. 422–429.
  4. Kaul' B.V., Samohvalov I.V. Orientatsiya chastits kristallicheskih oblakov Ci: Part 1. Orientatsiya pri padenii // Optika atmosf. i okeana. 2005. V. 18, N 11. P. 963–967.
  5. Galilejskij V.P., Borovoj A.G., Matvienko G.G., Morozov A.M. Zerkal'no otrazhennaya komponenta pri rasseyanii sveta na ledyanyh kristallah s preimushchestvennoj orientatsiej // Optika atmosf. i okeana. 2008. Т. 21, № 9. С. 773–778.
  6. Borovoi A., Galileiski V., Morozov A., Cohen A. Detection of ice crystal particles preferably oriented in the atmosphere by use of the specular component of scattered light // Opt. Express. 2008. V. 16, N 11. P. 7625–7633.
  7. Galileyskii V.P., Kaul B.V., Matvienko G.G., Morozov A.M. Uglovaya struktura intensivnosti sveta vblizi uglov zerkal'nogo otrazheniya ot granej kristallicheskih chastits l'da // Optika atmosf. i okeana. 2009. V. 22, N 7. P. 643–649; Galileyskii V.P., Kaul B.V., Matvienko G.G., Morozov A.M. Angular structure of the light intensity near the angles of mirror reflection from the faces of ice crystalline particles // Atmos. Ocean. Opt. 2009. V. 22, N 5. P. 506–512.
  8. Morozov A.M., Galilejskij V.P., Elizarov A.I., Kokarev D.V. Nablyudenie zerkal'nogo otrazheniya osveshchennoj podstilayushchej poverhnosti oblachnym sloem iz ledyanyh plastinok // Optika atmosf. i okeana. 2017. V. 30, N 1. P. 88–92.
  9. Volkovitskij O.A., Pavlova L.N., Petrushin A.G. Opticheskie svojstva kristallicheskih oblakov. L.: Gidrometeoizdat, 1984. 312 p.
  10. Light Scattering by Nonspherical Particles. Theory, Measurements, and Applications / M.I. Mishchenko, J.W. Hovenier, I.D. Travis (eds.). San Diego: Academic Press, 2000. 690 p.
  11. Chepfer H., Brogniez G., Goloub P., Francois M.B., Flamant P.H. Observations of horizontally oriented ice crystals in cirrus clouds with POLDER-1/ADEOS-1 // J. Quant. Spectrosc. Radiat. Transfer. 1999. V. 63, N 2–6. P. 521–543.
  12. Bréon F.M., Dubrulle B. Horizontally oriented plates in clouds // J. Atmos. Sci. 2004. V. 61, N 23. P. 2888–2898.
  13. Noel V., Chepfer N. A global view of horizontally oriented crystals in ice clouds from Cloud–Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) // J. Geophys. Res. 2010. V. 115, N D00H23. DOI: 10.1029/2009JD012365.
  14. Westbrook C.D., Illingworth A.J., OConnor E.J., Hogan R.J. Doppler lidar measurements of oriented planar ice crystals falling from supercooled and glaciated layer clouds // Q. J. R. Meteorol. Soc. 2010. V. 136, N 646. P. 260–276.
  15. Noel V., Chepfer N. Study of ice crystal orientation in cirrus clouds based on satellite polarized radiance measurements // J. Atmos. Sci. 2005. V. 61, N 16. P. 2073–2081.
  16. Zhou C., Yang P., Dessler A.E., Liang F. Statistical properties of horizontally oriented plates in optically thick clouds from satellite observations // IEEE Geosci. Remote Sens. Lett. 2013. V. 10, N 5. P. 996–990.
  17. Takano Y., Liou K.-N. Solar radiative transfer in cirrus clouds. Part II: Theory and computation of multiple scattering in an anisotropic medium // J. Atmos. Sci. 1989. V. 46, N 1. P. 20–36.
  18. Masuda K., Ishimoto H. Influence of particle orientation on retrieving cirrus cloud properties by use of total and polarized reflectances from satellite measurements // J. Quant. Spectrosc. Radiat. Transfer. 2004. V. 85, N 2. P. 183–193.
  19. Heymsfield A., Iaquinta J. Cirrus crystal terminal velocity // J. Atmos. Sci. 2000. V. 57, N 7. P. 916–938.
  20. Westbrook C.D. The fall speeds of sub – 100 mm ice crystals // Q. J. R. Meteorol. Soc. 2008. V. 134, iss. 634. P. 1243–1251.
  21. Spichtinger P., Gierens K.M. Modelling of cirrus clouds – Part 1b: Structuring cirrus clouds by dynamics // Atmos. Chem. Phys. 2009. V. 9, N 2. P. 707–719.
  22. Runheng H., Liou K.-N. Effects of horizontal orientation on the radiative properties of ice clouds // Adv. Atmos. Sci. 1985. V. 2, N 1. P. 20–27.
  23. Lavigne C., Roblin A., Chervet P. Solar glint from oriented crystals in cirrus clouds // Appl. Opt. 2008. V. 47, iss. 33. P. 6266–6276.
  24. Prigarin S.M., Borovoi A.G., Bruscaglioni P., Cohen A., Grishin I.A., Oppel U.G., Zhuravleva T.B. Monte Carlo simulation of radiation transfer in optically anisotropic clouds // Proc. SPIE. 2005. N 5829. P. 88–94.
  25. Prigarin S.M., Borovoj A.G., Grishin I.A., Oppel' U.G. Statisticheskoe modelirovanie perenosa izlucheniya /v opticheski anizotropnyh kristallicheskih oblakah // Optika atmosf. i okeana. 2007. V. 20, N 3. P. 205–210.
  26. Prigarin S.M. Numerical simulation of halo in crystal clouds by Monte Carlo method // Russ. J. Num. Anal. Math. Modelling. 2009. V. 24, N 5. P. 481–494.
  27. Borovoi A., Grishin I., Oppel U. Mueller matrix for oriented hexagonal ice crystals of cirrus clouds // XI Intern. Workshop on Multiple Scattering LIDAR Experiments (MUSCLE 11). Williamsburg, Virginia, USA: NASA Langley Research Center, 2000. P. 81–89.
  28. Borovoi A., Grishin I. Scattering matrices for large crystal particles // J. Opt. Soc. Am. A. 2003. V. 20, iss. 11. P. 2071–2080.
  29. Marchuk G.I., Mihajlov G.A., Nazaraliev M.A., Darbinyan R.A., Kargin B.A., Elepov B.S. Metod Monte-Karlo v atmosfernoj optike. Novosibirsk: Nauka, 1976. 280 p.
  30. Takano Y., Liou K.-N. Solar radiative transfer in cirrus clouds. Part I: Single scattering and optical properties of hexagonal ice crystals // J. Atmos. Sci. 1989. V. 46, N 1. P. 3–19.
  31. Zhuravleva T.B. Modelirovanie perenosa solnechnogo izlucheniya v razlichnyh atmosfernyh usloviyah. Part I: Determinirovannaya atmosfera // Optika atmosf. i okeana. 2008. V. 21, N 2. P. 99–114.
  32. Hess M., Koepke P., Schult I. Optical properties of aerosols and clouds: The software package OPAC // Bull. Am. Meteor. Soc. 1998. V. 79. P. 831–844.