Vol. 33, issue 11, article # 5

Smalikho I. N., Banakh V. A., Falits A. V., Sukharev A. A., Gordeev E. V. Taking into account the wind transfer of turbulent inhomogeneities when estimating the turbulent energy dissipation rate from measurements with a conically scanning coherent Doppler lidar. Part II. Experiment. // Optika Atmosfery i Okeana. 2020. V. 33. No. 11. P. 854–862. DOI: 10.15372/AOO20201105 [in Russian].
Copy the reference to clipboard


The method for estimating the turbulent energy dissipation rate from measurements by a conically scanning pulsed coherent Doppler lidar (PCDL), generalized to the case of arbitrary ratios of the average wind velocity to the linear scanning velocity, was tested on the data of atmospheric experiments while the use of a Stream Line PCDL and an sonic anemometer. A comparative analysis of the measurement results with the two devices showed that the improved method, which, unlike the previous approach, takes into account the wind transfer of turbulent inhomogeneities, allows obtaining unbiased estimates of the dissipation rate for any ratio of the average wind speed to the linear scanning speed.


coherent Doppler lidar, conical scanning, wind, turbulence


  1. Smaliho I.N. Uchet vetrovogo perenosa turbulentnyh neodnorodnostej pri otsenivanii skorosti dissipatsii turbulentnoj energii iz izmerenij konicheski skaniruyushchim kogerentnym doplerovskim lidarom. Part I. Teoriya // Optika atmosf. i okeana. 2020. V. 33, N 10. P. 756–761. 
  2. Smalikho I.N., Banakh V.A. Measurements of wind turbulence parameters by a conically scanning coherent Doppler lidar in the atmospheric boundary layer // Atmos. Meas. Techn. 2017. V. 10, N 11. P. 4191–4208. 
  3. Smaliho I.N., Banah V.A., Falits A.V., Rudi Yu.A. Opredelenie skorosti dissipatsii energii turbulentnosti iz dannyh, izmerennyh lidarom «Stream Line» v prizemnom sloe atmosfery // Optika atmosf. i okeana. 2015. V. 28, N 10. P. 901–905. 
  4. Banakh V.A., Smalikho I.N. Lidar estimates of the anisotropy of wind turbulence in a stable atmospheric boundary layer // Remote Sens. 2019. V. 11, N 18. 
  5. Banakh V.A., Smalikho I.N. Lidar observations of atmospheric internal waves in the boundary layer of atmosphere on the coast of Lake Baikal // Atmos. Meas. Tech. 2016. V. 9, N 10. P. 5239–5248. 
  6. Lamli Dzh., Panovskij G. Struktura atmosfernoj turbulentnosti. M.: Mir, 1966. 264 p. 
  7. Byzova N.L., Ivanov V.N., Garger E.K. Turbulentnost' v pogranichnom sloe atmosfery. L.: Gidrometeoizdat, 1989. 263 p. 
  8. Volkovitskaya Z.I., Ivanov V.N. Dissipatsiya turbulentnoj energii v pogranichnom sloe atmosfery // Izv. AN SSSR. Fiz. atmosf. i okeana. 1970. V. 6, N 5. P. 435–444. DOI: 10.3390/rs11182115. 
  9. O’Connor E.J., Illingworth A.J., Brooks I.M., Westbrook C.D., Hogan R.J., Davies F., Brooks B.J. A method for estimating the kinetic energy dissipation rate from a vertically pointing Doppler lidar, and independent evaluation from balloon-borne in situ measurements // J. Atmos. Ocean. Tech. 2010. V. 27, N 10. P. 1652–1664. 
  10. Frehlich R.G., Meillier Y., Jensen M.L., Balsley B., Sharman R. Measurements of boundary layer profiles in urban environment // J. Appl. Meteorol. Climatol. 2006. V. 45, N 6. P. 821–837.