Vol. 33, issue 10, article # 1

Gribanov K. G., Zаdvornykh I. V., Zakharov V. I. On the feasibility of 13CO2 retrieval from the spectra of satellite Fourier transform spectrometers of the IASI/METOP type. // Optika Atmosfery i Okeana. 2020. V. 33. No. 10. P. 751–755. DOI: 10.15372/AOO20201001 [in Russian].
Copy the reference to clipboard


The feasibility of developing a method for retrieval of the relative content of 13СО2/12СО2 in the atmosphere as a result of solving the inverse problem of satellite sounding of the atmosphere in the thermal infrared range with IASI spectrometers has been studied. In the model experiment, synthetic spectra were used with resolution and noise level characteristic of an improved version of the IASI-NG spectrometer. In computational experiments, it was shown that the vertical profiles of the 13CO2 concentration and the relative 13CO2/12CO2 content in the atmosphere are quite satisfactorily retrieved in the troposphere for the altitude range 2–11 km, which seems promising for future applications of the method suggested.


atmosphere, satellite remote sensing, IASI, carbon dioxide isotopologues


1. Scholze M., Kaplan J.O., Knorr W., Heimann M. Climate and interannual variability of the atmosphere-biosphere 13CO2 flux // Geophys. Res. Lett. 2003. V. 30, N 2. P. 1097. DOI: 10.1029/2002GL015631.
2. Antohina O.Yu., Antohin P.N., Arshinova V.G., Arshinov M.Yu., Belan B.D., Belan S.B., Davydov D.K., Dudorova N.V., Ivlev G.A., Kozlov A.V., Krasnov O.A., Maksyutov Sh.Sh., Machida T., Panchenko M.V., Pestunov D.A., Rasskazchikova T.M., Savkin D.E., Sasakawa M., Simonenkov D.V., Sklyadneva T.K., Tolmachev G.N., Fofonov A.V. Issledovanie dinamiki kontsentratsii parnikovyh gazov na territorii Zapadnoj Sibiri // Optika atmosf. i okeana. 2019. V. 32, N 9. P. 777–785.
3. Domysheva V.M., Sakirko M.V., Pestunov D.A., Panchenko M.V. Sezonnyj hod protsessa gazoobmena CO2 v sisteme «atmosfera–voda» v litorali Yuzhnogo Bajkala. 3. Osen' // Optika atmosf. i okeana. 2012. V. 25, N 9. P. 826–832; Domysheva V.M., Sakirko M.V., Pestunov D.A., Panchenko M.V. Seasonal behavior of the CO2 gas exchange process in the “atmosphere–water” system of littoral zone of Southern Baikal. 3. Autumn // Atmos. Ocean. Opt. 2013. V. 26, N 3. P. 252–258.
4. Keeling C.D., Piper S.C., Bacastow R.D., Wahlen M., Whorf T.P., Heimann M., Meijer H.A. Atmospheric CO2 and 13CO2 Exchange with the Terrestrial Biosphere and Oceans from 1978 to 2000: Observations and Carbon Cycle Implications. New York: Springer. 2005. DOI: 10.1007/0-387-27048-5-5.
5. Kuc T., Rozansky K., Zimnoch M., Necki J., Chmura L., Jelen D. Two decades of regular observations of 14CO2 and 13CO2 content in atmospheric carbon dioxide in Central Europe: Long-term changes of regional anthropogenic fossil CO2 emissions // Radiocarbon. 2007. V. 49, N 2. P. 807–816.
6. Xu J., Lee X., Xiao W., Cao C., Liu S., Wen X., Xu J., Zhang Z., Zhao J. Interpreting the 13C ∕ 12C ratio of carbon dioxide in an urban airshed in the Yangtze River Delta, China // Atmos. Chem. Phys. 2017. V. 17. P. 3385–3399. DOI: 10.5194/acp-17-3385-2017.
7. Rodica L., Manvendra K.D., Bradley G.H., Zachary T.B., Jay R.H., Thom R., Sang-Hyun L. Multiscale observations of CO2, 13CO2, and pollutants at Four Corners for emission verification and attribution // PNAS, 2014. V. 111, N 23. P. 8386–8391.
8. Reuter M., Bovensmann H., Buchwitz M., Burrows J.P., Deutscher N.M., Heymann J., Rozanov A., Schneising O., Sutob H., Toon C., Warneke T. On the potential of the 2041–2047 nm spectral region for remote sensing of atmospheric CO2 isotopologues // J. Quant. Spectrosc. Radiat. Transf. 2012. V. 113, iss. 16. P. 2009–2017. DOI: 10.1016/j. jqsrt.2012.07.013
9. Clerbaux C., Boynard A., Clarisse L., George M., Hadji-Lazaro J., Herbin H., Hurtmans D., Pommier M., Razavi A., Turquety S., Wespes C., Coheur P.-F. Mo­nitoring of atmospheric composition using the thermal infrared IASI // Atmos. Chem. Phys. 2009. V. 9. P. 6041–6054. DOI: 10.5194/acp-9-6041-2009.
10. Crevoisier C., Clerbaux C., Guidard V., Phulpin T., Armante R., Barret B., Camy-Peyret C., Chaboureau J.-P., Coheur P.-F., Crépeau L., Dufour G., Labonnote L., Lavanant L., Hadji-Lazaro J., Herbin H., Jacquinet-Husson N., Payan S., Péquignot E., Pierangelo C., Sellitto P., Stubenrauch C. Towards IASI-New generation (IASI-NG): Impact of improved spectral resolution and radiometric noise on the retrieval of thermodynamic, chemistry and climate variables // Atmos. Meas. Tech. 2014. V. 7. P. 4367–4385. DOI: 10.5194/ amt-7-4367-2014.
11. Zadvornyh I.V., Gribanov K.G., Zaharov V.I., Imasu R. Predvaritel'naya otsenka vozmozhnosti opredeleniya soderzhaniya 13CO2 iz spektrov IASI/METOP // Optika atmosf. i okeana. Fiz. atmosf.: Materialy XXV Mezhdunar. simpoz. Tomsk: Izd-vo IOA SO RAN, 2019. P. С-530–533. URL: https: //symp.iao.ru/files/symp/aoo/25/C.pdf (data obrashcheniya: 17.07.2020).
12. CAMS Greenhouse Gases Flux Inversions. [Elektronnyj resurs]. URL: https://apps.ecmwf.int/datasets/ data/cams-ghg-inversions/ (data obrashcheniya: 19.03.2020).
13. Rodgers C.D. Inverse Methods for Atmospheric Sounding. Theory and Practice. Singapore: World Scientific Publishing, 2000. 240 p.
14. Gribanov K.G., Zakharov V.I., Tashkun S.A., Tyuterev Vl.G. A new software tool for radiative transfer calculations and its application to IMG/ADEOS data // J. Quant. Spectrosc. Radiat. Transf. 2001. V. 68, N 4. P. 435–451.
15. GNU Octave [Elektronnyj resurs]. URL: https:// gnu.org/software/octave/ (data obrashcheniya: 19.03.2020).
16. Unidata NetCDF [Elektronnyj resurs]. URL: https: //www.unidata.ucar.edu/software/netcdf/ (data obrashcheniya: 19.03.2020).