Vol. 33, issue 09, article # 3

Toporovsky V. V., Kudryashov A. V., Samarkin V. V., Rukosuev A. L., Nikitin A. N., Sheldakova Yu. V., Otrubyannikova O. V. Cooled stacked-actuator deformable mirror for compensation of phase fluctuations in a turbulent atmosphere. // Optika Atmosfery i Okeana. 2020. V. 33. No. 09. P. 677–684. DOI: 10.15372/AOO20200903 [in Russian].
Copy the reference to clipboard

Abstract:

To compensate for aberration of laser radiation passed through a turbulent atmosphere, a wavefront corrector was designed in the form of a cooled stacked-actuator deformable mirror. In this work, theoretical estimations which allow one to determine main characteristics of this mirror are represented. The method suggested for cooling the reflecting surface of the wavefront corrector developed through piezoactuators body is experimentally studied. The results of measurements of main characteristics of the deformable mirror are shown, including the initial mirror surface shape, response functions of actuators, stroke of the mirror, and first resonance response of the mirror surface.

Keywords:

daptive optics, wavefront corrector, deformable mirror, high-power laser radiation

References:

    1. Salter P.S., Booth M.J. Adaptive optics in laser processing // Light Sci. Appl. 2019. V. 8. P. 110.
    2. Xu L., Wu Y., Du Y., Wang D., An X., Li M., Zhou T., Shang J., Wang J., Liu Z., Ou L., Zhao N., Xiang R., Tong L., Lin H., Gao Q., Lu Y., Zhang K., Tang C. High brightness laser based on Yb:YAG MOPA chain and adaptive optics system at room temperature // Opt. Express. 2018. V. 26. P. 14592–14600.
    3. Kanev F.Yu., Tsyro E.I. Vosstanovlenie trekhmernogo raspredeleniya pokazatelya prelomleniya atmosfery na osnove metodov adaptivnoj optiki // Optika atmosf. i okeana. 2010. V. 23, N 5. P. 398–404; Kanev F.Yu., Tsyro E.I. Reconstruction of the three-dimensional refractive index distribution by means of adaptive optics // Atmos. Ocean. Opt. 2010. V. 23, N 5. P. 426–432.
    4. Pilar J., Slezak O., Sikocinski P., Divoky M., Sawicka M., Bonora S., Lucianetti A., Mocek T., Jelinkova H. Design and optimization of an adaptive optics system for a high-average-power multi-slab laser (HiLASE) // Appl. Opt. 2014. V. 53. P. 3255–3261.
     5. Lylova A., Sheldakova Yu., Kudryashov A., Samarkin V. Formirovanie kol'tsevogo i supergaussova raspredelenij intensivnosti lazernogo izlucheniya v dal'nej zone s ispol'zovaniem bimorfnogo zerkala // Kvant. elektron. 2018. V. 48, N 1. P. 57–61.  
     6. Kudryashov A., Alexandrov A., Rukosuev A., Samarkin V., Galarneau P., Turbide S., Châteauneuf F. Extremely high-power CO2 laser beam correction // Appl. Opt. 2015 V. 54, N 14. P. 4352–4358.
     7. Wattellier B., Fuchs J., Zou J.-P., Kudryashov A., Aleksandrov A. Generation of a single hot spot by use of a deformable mirror and study of its propagation in an underdense plasma // J. Opt. Soc. Am. B. 2003. V. 20, N 8. P. 1632–1642. 
     8. Akahane Yu., Ma J., Fukuda Yu., Aoyama M., Kiriyama H., Sheldakova J., Kudryashov A., Yamakawa K. Characterization of wave-front corrected 100 TW, 10 Hz laser pulses with peak intensities greater than 1020 W/cm2 // Rev. Sci. Instrum. 2006. V. 77, N 2. P. 023102.
     9. Botygina N.N., Kolobov D.Yu., Kovadlo P.G., Lukin V.P., Chuprakov S.A., Shihovtsev A.Yu. Dvuhzerkal'naya adaptivnaya sistema korrektsii atmosfernyh pomekh Bol'shogo solnechnogo vakuumnogo teleskopa // Optika atmosf. i okeana. 2018. Т. 31, № 7. С. 563–569; Botygina N.N., Kolobov D.Yu., Kovadlo P.G., Lukin V.P., Chuprakov S.A., Shikhovtsev A.Yu. Two-mirror adaptive system for correction of atmospheric disturbances of the large solar vacuum telescope // Atmos. Ocean. Opt. 2018. V. 31, N 6. P. 709–717.
     10. Rukosuev A.L., Kudryashov A.V., Lylova A.N., Samarkin V.V., Sheldakova Yu.V. Adaptivnaya opticheskaya sistema dlya korrektsii volnovogo fronta v real'nom vremeni // Optika atmosf. i okeana. 2015. V. 28, N 2. P. 189–195; Rukosuev A.L., Kudryashov A.V., Lylova A.N., Samarkin V.V., Sheldakova Yu.V. Adaptive optics system for real-time wavefront correction // Atmos. Ocean. Opt. 2015. V. 28, N 4. P. 381–386.
     11. Barwick S. Least-squares estimation for hybrid curvature wavefront sensors // Opt. Commun. 2011. V. 284, N 8. P. 2099–2108.
      12. Akondi V., Castillo S., Vohnsen B. Digital pyramid wavefront sensor with tunable modulation // Opt. Express. 2013. V. 21, N 15. P. 18261–18272.
     13. Aleksandrov A.G., Zavalova V.E., Kudryashov A.V., Rukosuev A.L., Sheldakova Yu.V., Samarkin V.V., Romanov P.N. Datchik volnovogo fronta Shaka–Gartmana dlya izmereniya parametrov moshchnyh impul'snyh tverdotel'nyh lazerov // Kvant. elektron. 2010. V. 40, N 4. P. 321–326.
      14. Lukin V.P., Kanev F.Yu., Konyaev P.A., Fortes B.V. Chislennaya model' adaptivnoj opticheskoj sistemy. Part 2. Datchiki volnovogo fronta i ispolnitel'nye elementy // Optika atmosf. i okeana. 1995. V. 8, N 3. P. 419–428.
      15. Toporovskiy V., Kudryashov A., Samarkin V., Sheldakova J., Rukosuev A., Skvortsov A., Pshonkin D. Bimorph deformable mirror with a high density of electrodes to correct for atmospheric distortions // Appl. Opt. 2019. V. 58, N 22. P. 6019–6026.
      16. Rausch P., Verpoort S., Wittrock U. Unimorph deformable mirror for space telescopes: Design and manufacturing // Opt. Express. 2015. V. 23, N 15. P. 19469–19477.
      17. Sinquin J.C., Lurcon J.M., Guilemard C. Deformable mirror technologies for astronomy at CILAS // Proc. SPIE. 2008. V. 7015. P. 70150O1.
      18. Freeman R.H., Garcia H.R. High-speed deformable mirror system // Appl. Opt. 1982. V. 21, N 4. P. 589–595.
      19. Panich A.E. P'ezokeramicheskie aktyuatory. Rostov-na-Donu: YuFU, 2008. 159 p.
      20. Bol'basova L.A., Lukin V.P. Analiticheskie modeli vysotnoj zavisimosti strukturnoj postoyannoj pokazatelya prelomleniya turbulentnoj atmosfery dlya zadach adaptivnoj optiki // Optika atmosf. i okeana. 2016. V. 29, N 11. P. 918–925.
      21. Vorontsov M.A., Shmal'gauzen V.I. Printsipy adaptivnoj optiki. M.: Nauka, 1985. 336 p.
      22. Lukin V.P. Efficiency of some correction systems // Opt. Lett. 1979. V. 4, N 1. P. 15–17.
      23. Landau L.D., Lifshits E.M. Teoreticheskaya fizika. Teoriya uprugosti. M.: Nauka, 1987. 248 p.       
      24. Young W.C., Budynas R.G., Sadegh A.M. Roark's Formulas for Stress and Strain, Eighth Edition. The McGraw-Hill Companies, Inc., 2012. 1072 p.
      25. Shanin O.I. Adaptivnye opticheskie sistemy v impul'snyh moshchnyh lazernyh ustanovkah. M.: Tekhnosfera, 2012. 200 p.
      26. Sheldakova Yu.V., Kudryashov A.V., Rukosuev A.L., Cherezova T.Yu. Ispol'zovanie gibridnogo algoritma upravleniya bimorfnym zerkalom dlya fokusirovki svetovogo izlucheniya // Optika atmosf. i okeana. 2007. V. 20, N 4. P. 380–383.
      27. Ahn K., Yang H.S., Rhee H.G., Kihm H. CVD SiC deformable mirror with monolithic cooling channels // Opt. Express. 2018. V. 26, N 8. P. 9724–9739.
      28. Nikitin A., Sheldakova J., Kudryashov A., Borsoni G., Denisov D., Karasik V., Sakharov A. A device based on the Shack–Hartmann wave front sensor for testing wide aperture optics // Proc. SPIE. 2015. V. 9754. P. 97540K.