Vol. 33, issue 08, article # 8

Razenkov I. A. Peculiarities of atmospheric boundary layer sounding with a turbulent lidar. // Optika Atmosfery i Okeana. 2020. V. 33. No. 08. P. 643-648. DOI: 10.15372/AOO20200808 [in Russian].
Copy the reference to clipboard

Abstract:

Recommendations for the use of aerosol turbulent lidar for research in the atmospheric boundary layer are presented. The peculiarity of the turbulent lidar is that the sounding path angle should not exceed 10°. It is found that the optimal angle is 4°, at which it is possible to determine the structural constant of the refractive index in the range of altitudes from 100 m to 1 km. This range can be extended by 2 times if sounding at two or three angles to the horizon.

Keywords:

turbulence, lidar, atmospheric boundary layer

References:

  1. Hinkli E.D. Lazernyj kontrol' atmosfery. M.: Mir, 1979. 416 p.
  2. Gimmestad G.G., Roberts D.W., Stewart J.M., Wood J.W. Development of the lidar technique for the profiling optical turbulence // Opt. Eng. 2012. V. 51, iss. 10. DOI: 10.1117/1.OE.51.10.101713.
  3. Banah V.A., Razenkov I.A. Lidarnye izmereniya usileniya obratnogo rasseyaniya // Optika i spektroskopiya. 2016. V. 120, N 2. P. 339–348.
  4. Vinogradov A.G., Gurvich A.S., Kashkarov S.S., Kravtsov Yu.A., Tatarskij V.I. «Zakonomernost' uvelicheniya obratnogo rasseyaniya voln». Svidetel'stvo na otkrytie N 359. Prioritet otkrytiya: 25 august 1972 year v chasti teoreticheskogo obosnovaniya i 12 august 1976 year v chasti eksperimental'nogo dokazatel'stva zakonomernosti. Gosudarstvennyj reestr otkrytij SSSR // Byull. izobretenij. 1989. N 21.
  5. Vinogradov A.G., Kravtsov Yu.A., Tatarskij V.I. Effekt usileniya obratnogo rasseyaniya na telah, pomeshchennyh v sredu so sluchajnymi neodnorodnostyami // Izv. vuzov. Radiofiz. 1973. V. 16, N 7. P. 1064–1070.
  6. Gurvich A.S. Lidarnoe zondirovanie turbulentnosti na osnove usileniya obratnogo rasseyaniya // Izv. RAN. Fiz. atmosf. i okeana. 2012. V. 48, N 6. P. 655–665.
  7.  Lidar: Pat. N 116245. Russia, MPK, G 01 S 17/88. Gurvich A.S.; Uchrezhdenie Rossijskoj akademii nauk Institut fiziki atmosfery im. A.M. Obuhova (IFA RAN). N 2011150933/28; Zayavl. 15.12.2011; Opubl. 20.05.2012.
  8. Afanas'ev V.L., Gurvich A.S., Rostov A.P. Eksperimental'noe issledovanie effekta usileniya obratnogo rasseyaniya v turbulentnoj atmosfere // Tez. XVIII Mezhdunar. simpoz. «Optika atmosf. i okeana, fiz. atmosf.», Irkutsk, 2012. Tomsk: IOA SO RAN, 2012. P. 95–99.
  9. Ustrojstvo dlya registratsii usileniya obratnogo rasseyaniya v atmosfere: Pat. N 153460. Russia, MPK, G 01 S 17/95. Razenkov I.A., Banah V.A., Nadeev A.I. Federal'noe gosudarstvennoe byudzhetnoe uchrezhdenie nauki Institut optiki atmosfery im. V.E. Zueva SO RAN. N 2014149951/28; Zayavl. 10.12.2014; Opubl. 20.07.2015. Byul. N 20.
  10.  Ustrojstvo dlya registratsii usileniya obratnogo rasseyaniya v atmosfere: Pat. N 165087. Russia, MPK, G 01 S 17/95. Razenkov I.A., Banah V.A. Federal'noe gosudarstvennoe byudzhetnoe uchrezhdenie nauki Institut optiki atmosfery im. V.E. Zueva SO RAN. N 2016117721/28; Zayavl. 04.05.2016; Opubl. 10.10.2016.
  11. Kravtsov Yu.A., Saichev A.I. Effekty dvukratnogo prohozhdeniya voln v sluchajno neodnorodnyh sredah // Usp. fiz. nauk. 1982. V. 137, iss. 3. P. 501–527.
  12. Razenkov I.A. Turbulentnyj lidar. I. Konstruktsiya // Optika atmosf. i okeana. 2018. V. 31, N 1. P. 41–48; Rаzenkov I.А. Turbulent lidar: I – Desing // Atmos. Ocean. Opt. 2018. V. 31, N 3. P. 273–280.
  13. Razenkov I.A. Turbulentnyj lidar. II. Eksperiment // Optika atmosf. i okeana. 2018. V. 31, N 2. P. 81–89; Rаzenkov I.А. Turbulent lidar: II – Experiment // Atmos. Ocean. Opt. 2018. V. 31, N 3. P. 281–289.
  14. Razenkov I.A. Otsenka intensivnosti turbulentnosti iz lidarnyh dannyh // Optika atmosf. i okeana. 2020. V. 33, N 1. P. 1–9; Razenkov I.A. Estimation of the turbulence intensity from lidar data // Atmos. Ocean. Opt. 2020. V. 33, N 3. P. 245–253.
  15. Banakh V.A., Razenkov I.A. Refractive turbulence strength estimation based on the laser echo signal amplification effect // Opt. Lett. 2016. V. 41, iss. 19. P. 4429–4432.
  16. Razenkov I.A. Optimizatsiya parametrov turbulentnogo lidara // Optika atmosf. i okeana. 2019. V. 32, N 1. P. 70–81; Razenkov I.A. Optimization of parameters of a turbulent lidar // Atmos. Ocean. Opt. 2019. V. 32, N 3. P. 349–360.
  17. Banah V.A., Falits A.V., Zaloznaya I.V. Usilenie srednej moshchnosti ekhosignala prostranstvenno ogranichennogo lazernogo puchka v turbulentnoj atmosfere // Optika atmosf. i okeana. 2019. V. 32, N 5. P. 371–375.
  18. Vorob'ev V.V. O primenimosti asimptoticheskih formul vosstanovleniya parametrov «opticheskoj» turbulentnosti iz dannyh impul'snogo lidarnogo zondirovaniya. II. Rezul'taty chislennogo modelirovaniya // Optika atmosf. i okeana. 2016. V. 29, N 11. P. 987–993; Vorob’ev V.V. On the applicability of asymptotic formulas of retrieving “optical” turbulence parameters from pulse lidar sounding data: II – Results of numerical simulation // Atmos. Ocean. Opt. 2017. V. 30, N 2. P. 162–168.
  19. Gurvich A.S., Kon A.I., Mironov V.L., Hmelevtsov S.S. Lazernoe izluchenie v turbulentnoj atmosfere. M.: Nauka, 1976. 280 p.
  20. Razenkov I.A., Banakh V.A., Gorgeev E.V. Lidar “BSE-4” for the atmospheric turbulence measurements. Proc. SPIE 10833, 24th Internat. Sympos. Atmos. Ocean. Opt.: Atmos. Phys. V. 10833. P. 108332X. DOI: 10.1117/12.2505183.
  21. URL: http://attex.net/RU/index.php (last access: 15.03.2020).