Vol. 33, issue 08, article # 7

Banakh V. A., Smalikho I. N., Falits A. V. Wind temperature probing in the atmospheric boundary layer in the coastal area of Lake Baikal. II. Atmospheric waves and wind turbulence. // Optika Atmosfery i Okeana. 2020. V. 33. No. 08. P. 631-642. DOI: 10.15372/AOO20200807 [in Russian].
Copy the reference to clipboard

Abstract:

The results of experimental studies of the atmospheric boundary layer in the coastal zone of Lake Baikal using a coherent Doppler wind lidar and a temperature profiler are presented. Temporal-altitude distributions of the wind speed, temperature, and the Richardson number are derived. The parameters of atmospheric waves in a stably stratified boundary layer are determined. Variations in the dissipation rate of the kinetic energy of turbulence, the variance of the fluctuations of the radial velocity, and the outer turbulence scale during the low level jets and internal atmospheric waves in the stable boundary layer and their relation to variations in the Richardson number are analyzed.

Keywords:

atmospheric boundary layer, stable stratification, wind velocity turbulence, atmospheric waves, jets

References:

  1. Banah V.A., Smaliho I.N., Falits A.V. Temperaturno-vetrovoj rezhim ustojchivogo pogranichnogo sloya v pribrezhnoj zone Bajkala. I. Chislo Richardsona // Optika atmosf. i okeana. 2020. V. 33, N 8. P. 621–630..
  2. Newsom R.K., Banta R.M. Shear-flow instability in the stable nocturnal boundary layer as observed by Doppler lidar during CASES-99 // J. Atmos. Sci. 2003. V. 30. P. 16–33.
  3. Gibert F., Arnault N., Cuesta J., Plougonven R., Flamant P.H. Internal gravity waves convectively forced in the atmospheric residual layer during the morning transition // Q. J. R. Meteorol. Soc. 2011. V. 137. P. 1610–1624.
  4. Petenko I., Mastrantonio G., Viola A., Argentini S., Pietroni I. Wavy vertical motions in the ABL observed by sodar // Bound.-Lay. Meteorol. 2012. V. 143. P. 125–141. DOI: 10.1007/s10546-011-9652-y.
  5. Kamardin A., Odintsov S., Skorohodov A. Identifikatsiya vnutrennih gravitatsionnyh voln v atmosfernom pogranichnom sloe po dannym sodara // Optika atmosf. i okeana. 2014. V. 27, N 9. P. 812–818.
  6. Petenko I., Argentini S., Casasanta G., Kallistratova M., Sozzi R., Viola A. Wavelike structures in the turbulent layer during the morning development of convection at Dome C, Antarctica // Bound.-Lay. Meteorol. 2016. V. 161. P. 289–307. DOI: 10.1007/s10546-016-0173-6.
  7. Kallistratova M.A., Petenko I.V., Kuznetsov R.D., Kulichkov S.N., Chkhetiani O.G., Chunchuzov I.P., Lyulyukin V.S., Zajtseva D.V., Vazaeva N.V., Kuznetsov D.D., Perepelkin V.G., Bush G.A. Sodarnoe zondirovanie atmosfernogo pogranichnogo sloya (Obzor rabot IFA im. A.M. Obuhova RAN) // Izv. RAN. Fiz. atmosf. i okeana. 2018. V. 54, N 3. P. 283–300. DOI: 10.7868/S0003351518030054.
  8. Banakh V.A., Smalikho I.N. Lidar observations of atmospheric internal waves in the boundary layer of atmosphere on the coast of Lake Baikal // Atmos. Meas. Tech. 2016. V. 9. P. 5239–5248. DOI: 10.5194/amt-9-1-2016.
  9. Banah V.A., Smaliho I.N. Kogerentnye doplerovskie vetrovye lidary v turbulentnoj atmosfere. Tomsk: Izd-vo IOA SO RANatmosfernogo pogranichnogo sloya (Obzor rabot IFA im. A.M. Obuhova RAN) // Izv. RAN. Fiz. atmosf. i okeana., 2013. 304 p.
  10. Smalikho I.N., Banakh V.A. Measurements of wind turbulence parameters by a conically scanning coherent Doppler lidar in the atmospheric boundary layer // Atmos. Meas. Tech. 2017. V. 10. P. 4191–4208. DOI: 10.5194/amt-10-4191-2017.
  11. Banakh V.A., Smalikho I.N., Falits A.V. Estimation of the turbulence energy dissipation rate in the atmospheric boundary layer from measurements of the radial wind velocity by micropulse coherent Doppler lidar // Opt. Express. 2017. V. 25, N 19. P. 22679–22692. DOI: 10.1364/OE.25.022679.
  12. Banakh V.A., Smalikho I.N. Lidar Studies of wind turbulence in the stable atmospheric boundary layer // Remote Sens. 2018. V. 10. P. 1219. DOI: 10.3390/rs10081219.