Vol. 33, issue 08, article # 4

Gerasimov V. V. Short-term stability of temperature retrieval functions in the traditional pure rotational Raman lidar technique. // Optika Atmosfery i Okeana. 2020. V. 33. No. 08. P. 604-612. DOI: 10.15372/AOO20200804 [in Russian].
Copy the reference to clipboard


In the traditional pure rotational Raman (PRR) technique, air temperature is retrieved from lidar signals with a temperature retrieval function (TRF). The TRF coefficients are determined using a reference temperature profile from a model of the atmosphere or radiosonde data. In this work, we study the stability of several TRFs in time, i.e., we investigate to what extent the TRF coefficients determined on one of the measurement campaign days can be used to retrieve temperature on other days. We also analyze the situation when the reference data are absent on one of the measurement days (for example, due to a radiosonde fall) and the TRF coefficients are determined from the reference data over the remaining days. The stability of five TRFs is studied on the example of nighttime temperature profiles that were obtained using the IMCES PRR lidar (Tomsk) on April 6, 7, and 8, 2015. The function which retrieves the temperature in the troposphere (3–9 km) with the least errors for the considered three-day period has been determined.


Raman scattering, lidar, spectral line broadening, calibration function, tropospheric temperature


  1. Weng M., Yi F., Liu F., Zhang Y., Pan X. Single-line-extracted pure rotational Raman lidar to measure atmospheric temperature and aerosol profiles // Opt. Express. 2018. V. 26, N 21. P. 27555–27571.
  2. Mahagammulla Gamage S., Sica R.J., Martucci G., Haefele A. Retrieval of temperature from a multiple channel pure rotational Raman backscatter lidar using an optimal estimation method // Atmos. Meas. Tech. 2019. V. 12, N 11. P. 5801–5816.
  3. Chen H., Chen S.Y., Zhang Y.C., Guo P., Chen H., Chen B.L. Robust calibration method for pure rotational Raman lidar temperature measurement // Opt. Express. 2015. V. 23, N 16. P. 21232–21242.
  4. He J., Chen S., Zhang Y., Guo P., Chen H. A novel calibration method for pure rotational Raman lidar temperature profiling // J. Geophys. Res.: Atmos. 2018. V. 123, N 19. P. 10925–10934.
  5. Yan Q., Wang Y., Gao T., Gao F., Di H., Song Y., Hua D. Optimized retrieval method for atmospheric temperature profiling based on rotational Raman lidar // Appl. Opt. 2019. V. 58, N 19. P. 5170–5178.
  6. Cooney J.A. Measurement of atmospheric temperature profiles by Raman backscatter // J. Appl. Meteorol. 1972. V. 11, N 1. P. 108–112.
  7. Lidar: Range-resolved Optical Remote Sensing of the Atmosphere / Claus Weitkamp (ed.). New York: Springer-Verlag, 2005. V. 102. 456 p.
  8. Arshinov Yu.F., Bobrovnikov S.M., Zuev V.E., Mi-tev V.M. Atmospheric temperature measurements using a pure rotational Raman lidar // Appl. Opt. 1983. V. 22, N 19. P. 2984–2990.
  9. Nedeljkovic D., Hauchecorne A., Chanin M.L. Rotational Raman lidar to measure temperature from the ground to 30 km // IEEE Trans. Geosci. Remote Sens. 1993. V. 31, N 1. P. 90–101.
  10. Behrendt A., Reichardt J. Atmospheric temperature profiling in the presence of clouds with a pure rotational Raman lidar by use of an interference-filter-based polychromator // Appl. Opt. 2000. V. 39, N 9. P. 1372–1378.
  11. Di Girolamo P., Marchese R., Whiteman D.N., Demoz B.B. Rotational Raman Lidar measurements of atmospheric temperature in the UV // Geophys. Res. Lett. 2004. V. 31, N 1. P. L01106.
  12. Bobrovnikov S.M., Nadeev A.I. Sravnenie metodov obrabotki signala pri distantsionnom izmerenii temperatury po chisto vrashchatel'nym spektram kombinatsionnogo rasseyaniya // Optika atmosf. i okeana. 2010. V. 23, N 7. P. 580–584; Bobrovnikov S.M., Nadeev A.I. Comparison of signal processing methods in remote temperature measurements by pure rotational Raman spectra // Atmos. Ocean. Opt. 2010. V. 23, N 6. P. 523–527.
  13. Newsom R.K., Turner D.D., Goldsmith J.E.M. Long-term evaluation of temperature profiles measured by an operational Raman lidar // J. Atmos. Ocean. Technol. 2013. V. 30, N 8. P. 1616–1634.
  14. Lee III R.B. Tropospheric temperature measurements using a rotational Raman lidar: Ph.D. dissertation. [Electronic resource]. Hampton University, Hampton, Virginia. 2013. 112 pp. URL: https://pqdtopen.proquest.com/ doc/1437652821.html?FMT=ABS (last access: 12.04.2020).
  15. Jia J., Yi F. Atmospheric temperature measurements at altitudes of 5–30 km with a double-grating-based pure rotational Raman lidar // Appl. Opt. 2014. V. 53, N 24. P. 5330–5343.
  16. Li Y.J., Lin X., Yang Y., Xia Y., Xiong J., Song S.L., Liu L.M., Chen Z.W., Cheng X.W., Li F.Q. Temperature characteristics at altitudes of 5–80 km with a self-calibrated Rayleigh–rotational Raman lidar: A summer case study // J. Quant. Spectrosc. Radiat. Transf. 2017. V. 188. P. 94–102.
  17. Gerasimov V.V., Zuev V.V. Analytical calibration functions for the pure rotational Raman lidar technique // Opt. Express. 2016. V. 24, N 5. P. 5136–5151.
  18. Zuev V.V., Gerasimov V.V., Pravdin V.L., Pavlinskiy A.V., Nakhtigalova D.P. Tropospheric temperature measurements with the pure rotational Raman lidar technique using nonlinear calibration functions // Atmos. Meas. Tech. 2017. V. 10, N 1. P. 315–332.
  19. Gerasimov V.V. Comparative analysis of calibration functions in the pure rotational Raman lidar technique // Appl. Phys. B. 2018. V. 124, N 7. P. 134.
  20. Gerasimov V.V. Vliyanie stolknovitel'nogo ushireniya linij na tochnost' izmereniya temperatury troposfery s pomoshch'yu chisto vrashchatel'nyh Ramanovskih lidarov // Optika atmosf. i okeana. 2020. V. 33, N 1. P. 14–24.
  21. Ya-Juan L., Sha-Lei S., Fa-Quan L., Xue-Wu C., Zhen-Wei C., Lin-Mei L., Yong Y., Shun-Sheng G. High-precision measurements of lower atmospheric temperature based on pure rotational Raman lidar // Chin. J. Geophys. 2015. V. 58, N 21. P. 313–324.
  22. URL: https://drive.google.com/open?id=1AajZVv6ZrXdSZtCdBQzCl14sOEtwtV7N (last access: 12.04.2020).