Vol. 33, issue 08, article # 3

Dudorov V. V., Nasonova A. S. Comparison of post-detection correction of short- and long-exposure images formed by commonly used and multi-aperture observation systems in a turbulent atmosphere. // Optika Atmosfery i Okeana. 2020. V. 33. No. 08. P. 598–603. DOI: 10.15372/AOO20200803 [in Russian].
Copy the reference to clipboard

Abstract:

The retrieval efficiency is analyzed for atmospheric turbulence distorted images formed by single- and multi-aperture systems. Based on numerical simulation it is shown that the use of multi-aperture observation systems for computer correction of atmospheric distortions under anisoplanatism can significantly reduce the exposure time. In this case, the main distortions are well corrected when imaging for a short exposure time, which corresponds to the case of a “frozen” turbulent medium. Correction of residual small-scale distortions requires an-order-of-magnitude shorter time than in the case of long-exposure imaging with the use of common single-aperture observation systems.

Keywords:

multiaperture system, turbulent atmosphere, incoherent image

References:

  1. Ivanov M., McGaughey D. Image reconstruction by aperture diversity blind deconvolution // Proc. AMOS Tech. Conf. 12–15 September, 2007. Wailea, Maui, Hawaii. P. E78.
  2. Huebner C.S., Greco M. Blind deconvolution algorithms for the restoration of atmospherically degraded imagery: A comparative analysis // Proc. SPIE. 2008. V. 7108. Р. 71080M-1–12
  3. Schulz T. Multiframe blind deconvolution of astronomical images // J. Opt. Soc. Am. A. 1993. V. 10, N 5. P. 1064–1073.
  4. Averin A.P., Morozov Yu.B., Pryanichnikov V.S., Tyapin V.V. Computer correction of turbulent distortions of image of extended objects on near-Earth paths // Quant. Electron. 2011. V. 41, N 5. P. 475–478.
  5. Zhu X., Milanfar P. Image reconstruction from videos distorted by atmospheric turbulence // Proc. SPIE. 2010. V. 7543. P. 75430S-1–8.
  6. Hope D.A., Jefferies S.M., Hart M., Nagy J.G. High-resolution speckle imaging through strong atmospheric turbulence // Opt. Express. 2016. V. 24, N 11. P. 12116–12129.
  7. Dudorov V.V., Eremina A.S. Komp'yuternaya korrektsiya turbulentnyh iskazhenij nekogerentnyh opticheskih izobrazhenij pri ispol'zovanii mnogoaperturnyh sistem nablyudeniya // Optika atmosf. i okeana. 2018. V. 31, N 2. P. 95–102.
  8. Dudorov V.V., Eremina A.S. Computer correction of turbulent distortions of incoherent optical images using multi-aperture systems // Proc. SPIE. 2018. V. 10787. P. 107870E-1–9.
  9. Miller N.J., Haus J.W., McManamon P.F., Shemano D. Multi-aperture coherent imaging // Proc. SPIE. 2009. V. 8052. Р. 805207-1–12.
  10. Carles G., Muyo G., Bustin N., Wood A., Harvey A.R. Compact multi-aperture imaging with high angular resolution // J. Opt. Soc. Am. A. 2015. V. 32, iss. 3. P. 411–419.
  11. Imaging through volume turbulence (IVT). URL: https: //www.radiantsolutions.com/capabilities/enrich/sensor-data-enrichment (last access: 6.04.2020).
  12. Dudorov V.V., Eremina A.S. Opredelenie poperechnoj sostavlyayushchej skorosti vetra na osnove analiza videoryada izobrazhenij udalennyh ob"ektov. Part 2. Smeshchenie ob"ema turbulentnoj sredy // Optika atmosf. i okeana. 2017. V. 30, N 8. P. 682–690; Dudorov V.V., Eremina A.S. Retrieval of crosswind velocity based on the analysis of remote object images: Part 2 – Drift of turbulent volume // Atmos. Ocean. Opt. 2017. V. 30, N 6. P. 596–603.
  13. Dudorov V.V., Eremina A.S. Visualization of the wind drift of turbulent inhomogeneities // Proc. SPIE. 2018. V. 10787. DOI: 10.1117/12.2502461.
  14. Lukin V.P., Botygina N.N., Antoshkin L.V., Borzilov A.G., Emaleev O.N., Konyaev P.A., Kovadlo P.G., Kolobov D.Yu., Selin A.A., Soin E.L., Shihovtsev A.Yu., Chuprakov S.A. Mnogokaskadnaya sistema korrektsii izobrazheniya dlya Bol'shogo solnechnogo vakuumnogo teleskopa // Optika atmosf. i okeana. 2019. V. 32, N 5. P. 404–413; Lukin V.P., Botygina N.N., Antoshkin L.V., Borzilov A.G., Emaleev O.N., Konyaev P.A., Kovadlo P.G., Kolobov D.Yu., Selin A.A., Soin E.L., Shikhovtsev A.Yu., Chuprakov S.A. Multi-cascade image correction system for the Large solar vacuum telescope // Atmos. Ocean. Opt. 2019. V. 32, N 5. P. 597–606.