Vol. 33, issue 08, article # 10

Geints Yu. E., Zemlyanov A. A., Panina E. K., Minin I. V., Minin O. V. Generation of high-contrast “Talbot carpets” with the use of a mesoscale amplitude-phase mask. // Optika Atmosfery i Okeana. 2020. V. 33. No. 08. P. 656-659. DOI: 10.15372/AOO20200810 [in Russian].
Copy the reference to clipboard


The spatial near-field structure of optical wave scattered by a composite amplitude-phase diffraction mask with a ruling period on a wavelength scale is studied in numerical simulations by the finite element method. As applied to the displacement Talbot-nanolithography, such a combined binary mask is shown to provide multiple enhancement of the optical contrast of an integral "Talbot carpet" as compared to pure amplitude and phase masks. The physical causes of this effect are analyzed and the key role of Mie resonances excited inside the dielectric bars of the phase mask is ascertained. Meanwhile, the combined mask suggested ensures a high spatial resolution (up to a quarter of optical wavelength) and maximal optical contrast (up to 24 dB) of integral Talbot's self-images.


Talbot effect, photolithography, diffraction mask



1. Wen J., Zhang Y., Xiao M. The Talbot effect: recent advances in classical optics, nonlinear optics, and quantum optics // Adv. Opt. Photon. 2013. V. 5, iss. 1. P. 83–130. DOI: 10.1364/AOP.5.000083.
2.  Winthrop J.T., Worthington C.R. Theory of Fresnel images. I. Plane periodic objects in monochromatic light // J. Opt. Soc. Am. 1965. V. 55, iss. 1. P. 373–381. DOI: 10.1364/JOSA.55.000373.
3.  Min J.-H., Zhang X.A., Chang C.-H. Designing unit cell in three-dimensional periodic nanostructures using colloidal lithography // Opt. Express. 2015. V. 24, iss. 2. A276. DOI: 10.1364/OE.24.00A276.
4. Solak H.H., Dais C., Clube F. Displacement Talbot lithography: A new method for high-resolution patterning of large areas // Opt. Express. 2011. V. 19, iss. 11. P. 10686. DOI: 10.1364/OE.19.010686.
5. Thomae D., Sandfuchs O., Brunner R. Influence of oblique illumination on perfect Talbot imaging and nearly perfect self-imaging for gratings beyond five diffraction orders // J. Opt. Soc. Am. 2015. V. 32. P. 2365–2372. DOI: 10.1364/JOSAA.32.002365.
6. Noponen E., Turunen J. Electromagnetic theory of Talbot imaging // Opt. Commun. 1993. V. 98. P. 132–140. DOI: 10.1016/0030-4018(93)90772-W.
7. Chen H., Qin L., Chen Y., Jia P., Gao F., Chen C., Liang L., Zhang X., Lou H., Ning Y., Wang L. Refi­ned grating fabrication using displacement Talbot lithography // Microelectron. Eng. 2018. V. 189. P. 74–77. DOI: 10.1016/j.mee.2017.12.018.
8. Geints Y.E., Minin O.V., Minin I.V. Apodization‐assisted subdiffraction near‐field localization in 2D phase diffraction grating // Ann. Phys. 2019. V. 531. P. 1900033. DOI: 10.1002/andp.201900033.
9. Ishikawa K., Karahashi K., Ishijima T., Cho S.I., Elliott S., Hausmann D., Mocuta D., Wilson A. Kinoshita K. Progress in nanoscale dry processes for fabrication of high-aspect-ratio features: How can we control critical dimension uniformity at the bottom? // Jap. J. Appl. Phys. 2018. V. 57, N 6S2. P. 06JA01-1-18. DOI: 10.7567/JJAP.56.06HA02.