Vol. 33, issue 06, article # 3

Dul'tseva G. G., Nemova E. F., Dubtsov S. N., Plokhotnichenko M. E. Aerosol generating potential of the products of atmospheric photooxidation of biogenic organic compounds. // Optika Atmosfery i Okeana. 2020. V. 33. No. 06. P. 437–440. DOI: 10.15372/AOO20200603 [in Russian].
Copy the reference to clipboard


Field measurements of the concentrations of oxygenated organics in urban air and in forest were carried out. The results were used to test the model of atmospheric transformation of biogenic compounds. The simulation showed that condensable compounds of several classes are formed: hydroperoxides, peroxides, alkylperoxynitrates and nitrites, peracids. Their aerosol-generating potential was evaluated on the basis of the calculated steady-state concentrations of the direct precursors of aerosol phase. It was discovered that the main precursors of the nuclei of solid phase are hydroperoxides and peracids. The reason of their efficiency is their photolysis with the formation of oxygenated free radicals, which initiate gas-to-particle conversion through polymerization of unsaturated compounds via the free radical mechanism.


biogenic compounds, atmospheric organic aerosol, aldehydes, aerosol formation


  1. Seinfeld J.H. Atmospheric Chemistry and Physics of Air Pollution. New York: John Wiley & Sons, 2005. 738 p.
  2. Kanakidou M., Seinfeld J.H., Pandis S.N., Barnes I., Dentener F.J., Facchini M.C., van Dingenen R., Ervens B., Nenes A., Nielsen C.J., Swietlicki E., Putaud J.P., Balkanski Y., Fuzzi S., Horth J., Moortgat G.K., Winterhalter R., Myhre C.E.L., Tsigaridis K., Vignati E., Stephanou E.G., Wilson J. Organic aerosol and global climate modelling: A review // Atmos. Chem. Phys. Discuss. 2004. V. 4. P. 5855–6024.
  3. Hamilton J.F., Webb P.J., Lewis A.C., Hopkins J.R., Smith S., Davy P. Partially oxidised organic components in urban aerosol using GCXGC-TOF/MS // Atmos. Chem. Phys. 2004. V. 4. P. 1279–1290.
  4. Xing L., Bao J.L., Wang Zh., Zhang F., Truhlar D.G. Degradation of carbonyl hydroperoxides in the atmosphere and in combustion // J. Am. Chem. Soc. 2017. V. 139, N 44. P. 15821–15835.
  5. Li Y., Chen Zh., Huang L., Huang D. Organic peroxides’ gas-particle partiotioning and rapid heterogeneous decomposition on secondary organic aerosol // Atmos. Chem. Phys. 2016. V. 16. P. 1837–1848.
  6. Dultseva G.G., Dubtsov S.N., Dultsev F.N., Kobzeva T.V., Nekrasov D.V. Analysis of the surface functional groups of organic nanoparticles formed in furfural vapour photonucleation using a rupture event scanning technique // Anal. Meth. 2017. V. 9. P. 5348–5355. DOI: 10.1039/c7ay01437f.
  7. Dultsev F.N., Mik I.A., Dubtsov S.N., Dultseva G.G. Identification of the functional groups on the surface of nanoparticles formed in photonucleation of aldehydes generated during forest fire events // Proc. SPIE. 2014. V. 9292. DOI: 10.1117/12.2075567.
  8. Dubtsov S.N., Dul'tseva G.G., Plohotnichenko M.E., Koshlyakov P.V., Kobzeva T.V. Issledovanie kinetiki fotoliza i fotohimicheskogo aerozoleobrazovaniya furfuralya // Optika atmosf. i okeana. 2017. V. 30, N 6. P. 476–480. DOI: 10.15372/AOO20170605.
  9. Kejko A.V. NICK (Numerical Instrument for Chemical Kinetics), versiya 2.2. Institut sistem energetiki im. L.A. Melent'eva, 1996.
  10. NIST Chemical Kinetics Database. Standard Reference Data. Gaithersburg, MD 20899.
  11. Makarov V.N. Postuplenie ugleroda s ionami organicheskih karbonovyh kislot (formiat, atsetat i oksalat) v snezhnyj pokrov merzlotnyh landshaftov // Optika atmosf. i okeana. 2019. V. 32, N 2. P. 151–155.
  12. McKillip W.J. Chemistry of furan polymers, in: Adhesives from Renewable Resources // ACS Symp. Ser., Am. Chem. Soc. 1989. P. 117–138.