Vol. 33, issue 06, article # 1

Golobokova L. P., Khodzher T. V., Izosimova O. N., Zenkova P. N., Pochyufarov A. O., Khuriganova O. I., Onischuk N. A., Marinaite I. I., Pol'kin V. V., Radionov V. F., Sakerin S. M., Lisitsin A. P., Shevchenko V. P. Chemical composition of atmospheric aerosol in the Arctic region along the routes of the research cruises in 2018–2019. // Optika Atmosfery i Okeana. 2020. V. 33. No. 06. P. 421–429. DOI: 10.15372/AOO20200601 [in Russian].
Copy the reference to clipboard

Abstract:

The chemical composition (ions, elements, polycyclic aromatic hydrocarbons) of atmospheric aerosol in the North Atlantic, in the European and Russian parts of the Arctic Ocean and in the seas of the northern latitudes and the Far East was analyzed. The studies were carried out on board the research vessels along their cruise routes (RV “Akademik Treshnikov", RV “Akademik Mstislav Keldysh", RV “Professor Multanovsky"). The air was sampled using the methodology accepted by the international networks operating under the Acid Deposition Monitoring Network in East Asia (EANET) and European Monitoring and Evaluation Programme (EMEP). The analysis of the chemical composition of the aerosol along the routes of the research cruises showed the following below. The total ion content and the concentrations of individual ions in the aerosol of the North Atlantic and in the European part of the Arctic Ocean correspond to the data that was obtained within the measurement work fulfilled in the Laptev and Kara Seas in 2018 and 2019. The increased values of the sum of PAHs in Russia's central regions in the Arctic correspond quite well to the increased concentrations of ions and trace elements in the content of the aerosol. Trace elements are noted to have different concentrations in the content of the aerosols of the North Atlantic and Russia's central regions of the Arctic. This fact can point at different sources of these components.

Keywords:

atmospheric aerosol, Arctic seas, North Atlantic, chemical composition

References:

1. Kaufman Y.J., Koren I., Remer L.A., Rosenfeld D., Rudich Y. The effect of smoke, dust, and pollution aerosol on shallow cloud development over the Atlantic Ocean // PNAS. 2005. V. 102, N 32. P. 11207–11212. DOI: 10.1073/pnas.0505191102.
2. Lee E.-H., Sohn B.-J. Recent increasing trend in dust frequency over Mongolia and Inner Mongolia regions and its association with climate and surface condition change // Atmos. Environ. 2011. V. 45, N 27. P. 4611–4616. DOI: 10.1016/j.atmosenv.2011.05.065.
3. Sakerin S.M., Kabanov D.M., Radionov V.F., Chernov D.G., Turchinovich Yu.S., Lubo-Lesnichenko K.E., Prahov A.N. Obobshchenie rezul'tatov izmerenij aerozol'noj opticheskoj tolshchiny atmosfery na arh. SHpitsbergen v 2011–2016 years // Optika atmosf. i okeana. 2017. V. 30, N 11. P. 948–955; Sakerin S.M., Kabanov D.M., Radionov V.F., Chernov D.G., Turchinovich Yu.S., Lubo-Lesnichenko K.E., Prakhov A.N. Generalization of results of atmospheric aerosol optical depth measurements on Spitsbergen Archipelago in 2011–2016 // Atmos. Ocean. Opt. 2018. V. 31, N 2. P. 163–170.
4. Schneider S.H. The greenhouse effect: Science and policy // Science. 1989. V. 243, N 4892. P. 771–781. DOI: 10.1126/science.243.4892.771.
5. Robinson A.B., Robinson N.E., Soon W. Environmental effects of increased atmospheric Carbon Dioxide // J. Am. Phys. Surg. 2007. V. 12, N 3. P. 79–90.
6. Kramm G., Dlugi R. Scrutinizing the atmospheric greenhouse effect and its climatic impact // Nat. Sci. 2011. V. 3. P. 971–998. DOI: 10.4236/ns.2011.312124.
7. Wilmes S.B., Raible C.C., Stocker T.F. Climate of the Past Climate variability of the mid- and high-latitudes of the Southern Hemisphere in ensemble simulations from 1500 to 2000 AD // Clim. Past. 2012. V. 8, N 1. Р. 373–390. DOI: 10.5194/cp-8-373-2012.
8. Barnes E. A., Polvani L.M. CMIP5 projections of Arctic amplification, of the North American/North Atlantic circulation, and of their relationship // J. Clim. 2015. V. 28, N 13. P. 5254–5271. DOI: 10.1175/JCLI-D-14-00589.1.
9. Fisher J.A., Jacob D.J., Wang Q., Bahreini R., Carouge C.C., Cubison M.J., Dibb J.E., Diehl T., Jimenez J.L., Leibensperger E.M., Lu Z., Meinders M.B.J., Pye H.O.T., Quinn P.K., Sharma S., Streets D.G., Van Donkelaar A., Yantosca R.M. Sources, distribution, and acidity of sulfate–ammonium aerosol in the Arctic in winter–spring // Atmos. Environ. 2011. V. 45, N 39. P. 7301–7318. DOI: 10.1016/j.atmosenv.2011.08.030.
10. Fenger M., Sørensen L.L., Kristensen K., Jensen B., Nguyen Q.T., Nojgaard J.K., Massling A., Skov H., Becker T., Glasius M. Sources of anions in aerosols in northeast Greenland during late winter // Atmos. Chem. Phys. 2013. V. 13, N 3. P. 1569–1578. DOI: 10.5194/acp-13-1569-2013.
11. Udisti R., Bazzano A., Becagli S., Bolzacchini E., Caiazzo L., Cappelletti D., Ferrero L., Frosini D., Giardi F., Grotti M., Lupi A., Malandrino M., Mazzola M., Moroni B., Severi M., Traversi R., Viola A., Vitale V. Sulfate source apportionment in the Ny-Alesund (Svalbard Islands) Arctic aerosol // Rendiconti Lincei-Scienze Fisichee Naturali. 2016. V. 27. P. 85–94. DOI: 10.1007/s12210-016-0517-7.
12. Vinogradova A.A., Kotova E.I., Topchaya V.Yu. Atmosfernyj perenos tyazhelyh metallov v rajony severa Evropejskoj territorii Rossii // Geografiya i prirodnye resursy. 2017. N 1. P. 108–116. DOI: 10.21782/gipr0206-1619-2017-1(108-116).
13. Vinogradova A.A., Smirnov N.S., Korotkov V.N. Anomal'nye pozhary 2010 i 2012 years na territorii Rossii i postuplenie chernogo ugleroda v Arktiku // Optika atmosf. i okeana. 2016. V. 29, N 6. P. 482–4874; Vinogradova A.A., Smirnov N.S., Korotkov V.N. Anomalous wildfires in 2010 and 2012 on the territory of Russia and supply of Black Carbon to the Arctic // Atmos. Ocean. Opt. 2016. V. 29, N 5. P. 545–550.
14. Clausen H.B., Hammer C.U. The Laki and Tambora eruptions as revealed in Greenland ice cores from 11 locations // Ann. Glaciology. 1988. V. 10. P. 16–22. DOI: https://doi.org/10.3189/S0260305500004092.
15. Izrael' Yu.A. Radioaktivnoe zagryaznenie prirodnyh sred v rezul'tate avarii na CHernobyl'skoj atomnoj stantsii. M.: Komtekhprint, 2006. 28 p.
16. Campbell G., Lee D.S. Atmospheric deposition of sulphur and nitrogen species in the UK // Freshwater Biol. 1996. V. 36, N 1. P. 151–167. DOI: 10.1046/j.1365-2427.1996.00076.x.
17. Abrahamsen G., Stuanes A.O., Tveite B. Effect of long range transported air pollutants in Scandinavia // Water Qual. Bull. 1983. V. 8, N 2. P. 89–95.
18. Moiseenko T.I. Critical load of SO24 for surface waters in the Kola Region of Russia // Water, Air. and Soil Pollut. 1996. V. 2. P. 19–39.
19. Galloway J.N. Acidification of the world: Natural and anthropogenic // Water, Air. and Soil Pollut. 2001. V. 130. N 1–4. P. 17–24. URL: http://dx.doi.org/10.1023/A:1012272431583.
20. Obolkin V., Khodzher T., Sorokovikova L., Tomberg I., Netsvetaeva O., Golobokova L. Effect of long-range transport of sulphur and nitrogen oxides from large coal power plants on acidification of river waters in the Baikal region, East Siberia // Int. J. Environ. Stud. 2016. V. 73, N 3. P. 452–461. DOI: 10.1080/00207233.2016.1165481.
21. Xu G., Gao Y. Atmospheric trace elements in aerosols observed over the Southern Ocean and coastal East Antarctica // Polar Res. 2014. V. 33. 23973. DOI: org/10.3402/polarv.33.23973.
22. GAW (Global Atmosphere Watch). Manual for the gaw precipitation chemistry programme. WMO-GAW Report N 160 / M.A. Allan (ed.) [Electronic resource]. URL: http://qasac-americas.org (last access: 17.12.2019).
23. EANET (Acid Deposition Monitoring Network in East Asia) 1998–2018. Report of the Inter-Laboratory Comparison Project [Electronic resource]. URL: http://www.eanet.asia/product/index.html (last access: 17.12.2019).
24. Karta pozharov [Elektronnyj resurs]. URL: https://fires.ru (data obrashcheniya: 15.11.2019).
25. ARL NOAA Atmospheric Resource Laboratory NOAA [Electronic resource]. URL: http://www.arl.noaa.gov (last access: 12.11.2019).
26. Sakerin S.M., Zenkova P.N., Kabanov D.M., Kalashnikova D.A., Lisitsyn A.P., Makarov V.I., Pol'kin V.V., Popova S.A., Simonova G.A., Chankina O.V., Shevchenko V.P. Rezul'taty issledovanij fiziko-himicheskih harakteristik atmosfernogo aerozolya v 71-m rejse NIS «Akademik Mstislav Keldysh» // Optika atmosf. i okeana. 2020. V. 33, N 5. P. 358–367.
27. Cook P.A., Savage N.H., Turquety S., Carver G.D., O’Connor F.M., Heckel A., Stewart D., Whalley L.K., Parker A.E., Schlager H., Singh H.B., Avery M.A., Sachse G.W., Brune W., Richter A., Burrows J.P., Purvis R., Lewis A.C., Reeves C.E., Monks P.S., Levine J.G., Pyle J.A. Forest fire plumes over the North Atlantic: p-TOMCAT model simulations with aircraft and satellite measurements from the ITOP/ICARTT campaign // J. Geophys. Res. 2007. V. 112. D10S43. DOI: 10.1029/2006JD007563.
28. Barnaba F., Angelini F., Curci G., Gobbi G.P. An important fingerprint of wildfires on the European aerosol load // Atmos. Chem. Phys. 2011. V. 11. P. 10487–10501. DOI: 10.5194/acp-11-10487-2011.
29. Tsunogai S., Saito O., Yamada K., Nakay S. Chemical composition of oceanic aerosol // J. Geophys. Res. 1972. V. 77. P. 5283–5292.
30. Urbanski S.P., Hao W.M., Baker S. Chemical composition of wildland fire emissions // Develop. Environ. Sci. 2009. V. 8. P. 79–107. DOI: 10.1016/S1474-8177(08)00004-1.
31. Bodí M.B., Martin D.A., Balfour V.N., Santín C., Doerr S.H., Pereira P., Cerdà A., Mataix-Solera J. Wildland fire ash: Production, composition and eco-hydro-geomorphic effects // Earth-Sci. Rev. 2014. N 130. Р. 103–127. DOI: 10.1016/j.earscirev.2014.07.005.
32. Yli-Tuomi T., Venditte L., Hopke P.K., Basunia M.S., Landsberger S., Viisanen Y., Paatero J. Composition of the Finnish Arctic aerosol: Collection and analysis of historic filter samples // Atmos. Environ. 2003. V. 37, N 17. P. 2355–2364.
33. Shevchenko V.P. Vliyanie aerozolej na sredu i morskoe osadkonakoplenie v Arktike. M.: Nauka, 2006. 226 p.
34. Dauval'ter V.A., Dauval'ter M.V., Saltan N.V., Semenov E.N. Himicheskij sostav atmosfernyh vypadenij v zone vliyaniya kombinata «Severonikel'» // Geohimiya. 2008. N 10. P. 1131–1136.
35. Vinogradova A.A. Mikroelementy v sostave arkticheskogo aerozolya (obzor) // Izv. AN. Fiz. atmosf. i okeana. 1993. V. 29, N 4. P. 437–456.
36. Interpretatsiya geohimicheskih dannyh / pod red. E.V. Sklyarova. M.: Intermet Inzhiniring, 2001. 288 p.
37. Radionov V.F., Kabanov D.M., Pol'kin V.V., Sakerin S.M., Izosimova O.N. Harakteristiki aerozolya nad arkticheskimi moryami Evrazii: rezul'taty izmerenij 2018 goda i srednee prostranstvennoe raspredelenie v letne-osennie periody 2007–2018 years // Problemy Arktiki i Antarktiki. 2019. N 4. P. 405–421. DOI: 10.30758/0555-2648-2019-65-4-405-421.
38. Shevchenko V., Lisitzin A., Vinogradova A., Stein R. Heavy metals in aerosols over the seas of the Russian Arctic // Sci. Total Environ. 2003. V. 306. P. 11–25.
39. Nikitin V.A., Konoplev A.V., Bulgakov A.A. Zavisimost' soderzhaniya stojkih organicheskih zagryaznyayushchih veshchestv v atmosfere rossijskoj Arktiki ot temperatury prizemnogo sloya vozduha // Meteorol. i gidrol. 2006. N 6. P. 44–52.
40. Heintzenberg J., Hansson H.-C., Lannefors H. The chemical composition of arctic haze at Ny-Alesund, Spitsbergen // Tellus. 1981. V. 33, N 2. P. 162–171. DOI: 10.3402/tellusa.v33i2.10705.
41. Ponomareva V.V., Portnyagin M.V., Mel'nikov D.V. Sostav tefry sovremennyh (2009–2011 years) izverzhenij vulkanov Kamchatki i Kuril'skih ostrovov // Vestn. KRAUNTS. Nauki o zemle. 2012. Iss. 20. N 2. P. 23–37.