Vol. 33, issue 02, article # 8

Kruchenitskii G.M., Statnikov K.A. Seasonal and long-term variability of the energy balance components of the Earth's climate system and their impact on global temperature. // Optika Atmosfery i Okeana. 2020. V. 33. No. 02. P. 135–141 [in Russian].
Copy the reference to clipboard
Abstract:

Seasonal and long-term variability of energy balance parameters of the Earth's climate system: albedo and solar irradiance is analyzed. It is shown that the parametric resonance of the Earth's climate system with long-period tidal oscillations, as well as the deformation of the solar photosphere under the influence of giant planets and, in addition, small fluctuations of the solar constant can lead to long-term changes in global temperature observed from the middle of the century before last. The periods of slow oscillations leading to such changes are investigated and physically justified. It is shown that the oscillatory model of long-term changes in global temperature is significantly more effective than the trend one. In addition, it is shown that random fluctuations, more than an order of magnitude inferior to those observed in the experiment with high probability can form a seeming (diffusion) trend of global temperature, not inferior to the assumed in the framework of the anthropogenic version of the so-called "global warming".

Keywords:

albedo, seasonal and long-term variability, photosphere deformation, solar constant fluctuations, trends, tidal oscillations, parametric resonance, climate

Figures:
References:

  1. URL: http://www.mmnt.net/db/0/0/toms.gsfc.nasa. gov/pub/omi/data/Level3e/reflectivity (last access: 14.03.2019).
  2. Third Assessment Report – Climate Change 2001 [Electronic resource]. URL: http://www.ipcc.ch/ (last access: 14.03.2019).
  3. Marchuk G.I., Kagan B.A. Dinamika okeanskih prilivov. L.: Gidrometeoizdat, 1982. 359 p.
  4. Venttsel' E.S., Ovcharov L.A. Teoriya sluchajnyh protsessov i ee inzhenernye prilozheniya. M.: Nauka, 1991. 274 p.
  5. URL: http://www.cru.uea.ac.uk/cru/data/temperature/ (last access: 14.03.2019).
  6. Ponomareva O.V. Rol' planet i planetnyh grupp v aktivnosti Solntsa. DVO RAN Kamchatskij nauchnyj tsentr [Electronic resource]. URL: http://www.emsd.ru/konfD71112/pdl/t2/str212.pdf (last access: 14.03.2019).
  7. Dvoretskaya I.V., Kruchenitskij G.M., Matvienko G.G., Stanevich I.I. Astronomicheskie faktory v dolgovremennoj evolyutsii klimata Zemli // Optika atmosf. i okeana. 2014. V. 27, N 2. P. 139–152.
  8. Mandel'shtam L.I. Lektsii po teorii kolebanij. M.: Nauka, 1972. P. 172–181.
  9. Gruza G.V., Ran'kova E.Ya. Ozhidaemye i nablyudaemye izmeneniya klimata Rossii: temperatura vozduha. Obninsk: VNIIGMI-MTSD, 2012. 194 p.
  10. Pushkin A.S. Evgenij Onegin. PSS v 10 t. M.-L.: Izd-vo AN SSSR, 1949. V. 5. P. 99.
  11. Borisenkov E.P., Pasetskij V.M. Tysyacheletnyaya letopis' neobyknovennyh yavlenij prirody. M.: Mysl', 1988. 442 p.
  12. Monin A.S., Shishkov Yu.A. Klimat kak problema fiziki // Uspekhi fiz. nauk. 2000. V. 170, N 4. P. 419–445.
  13. Kruchenitskij G.M. Global'naya temperatura: potentsial'naya tochnost' izmereniya, stohasticheskie vozmushcheniya i dolgovremennye izmeneniya // Optika atmosf. i okeana. 2007. V. 20, N 12. P. 1064–1070.
  14. Byalko A.V. Nasha planeta – Zemlya. M.: Nauka, 1989. 220 p.
  15. Feller V. Vvedenie v teoriyu veroyatnosti i ee prilozheniya. M.: Mir, 1964. V. 1. P. 81–104.
  16. Vozmozhnosti predotvrashcheniya izmeneniya klimata i ego negativnyh posledstvij. Materialy soveta-seminara pri Prezidente RAN. M.: Nauka, 2006. 257 p.

Back