Vol. 33, issue 02, article # 2

Starikov V.I. Study of the H2O polarisability vibrational dependence by the analysis of rovibrational line shifts. // Optika Atmosfery i Okeana. 2020. V. 33. No. 02. P. 88–94 [in Russian].
Copy the reference to clipboard

The study of the vibrational dependence of H2O polarisability a is based on the comparison of experimental and calculated line shifts induced by argon, nitrogen, and air pressure in different H2O vibrational bands. The dependence of a on the bending vibration is expressed as a power series in the displacement Δθ of the coordinate θ of large amplitude bending motion. The coefficients of the power series were selected in the way which gives the best agreement of calculated matrix elements <Ψnια(θ)ιψn> with the values of the polarizabylity α(n) obtained in the analysis of experimental line shifts in n × ν2 H2O bands perturbed by nitrogen, oxygen, air and argon pressure. The rotational contributions in the effective polarizability of H2O is obtained and discussed. The comparison of obtained α(θ) with ab initio calculations is carried out.


water molecule, polarisability, broadening and shift of spectral lines


  1. Bykov A.D., Sinitsa L.N., Starikov V.I. Eksperimental'nye i teoreticheskie metody v spektroskopii vodyanogo para. Novosibirsk: Izd-vo SO RAN, 1999. 376 p.
  2. Starikov V.I., Tyuterev Vl.G. Vnutrimolekulyarnye vzaimodejstviya i teoreticheskie metody v spektroskopii nezhestkih molekul. Tomsk: Izd-vo «Spektr» IOA SO RAN, 1997. 231 p.
  3. Starikov V.I. Vibration-rotation interaction potential for H2O–A system // J. Quant. Spectrosc. Radiat. Transfer. 2015. V. 155. P. 49–56.
  4. Shostak S.L., Muenter J.S. The dipole moment of water. II. Analysis of the vibrational dependence of the dipole moment in terms of a dipole moment function // J. Chem. Phys. 1991. V. 94. P. 5883–5890.
  5. Mengel M., Jensen P. A theoretical study of the Stark effect in triatomic molecules: Application to H2O // J. Mol. Spectrosc. 1995. V. 169. P. 73–91.
  6.  Luo Y., Agren H., Vahtras O., Jorgensen P., Spirko V., Hettema H. Frequency-dependent polarizabilities and first hyperpolarizabilities of H2O // J. Chem. Phys. 1993. V. 98. P. 7159–7164.
  7.  Petrova T.M., Solodov A.M., Solodov A.A., Starikov V.I. Measurements and calculations of Ar-broadening and -shifting parameters of the water vapor transitions in the wide spectral region // Mol. Phys. 2017. V. 115. P. 1642–1656.
  8. Starikov V.I., Petrova T.M., Solodov A.M., Solodov A.A., Deichuli V.M. Study of the H2O dipole moment and polarizability vibrational dependence by the analysis of rovibrational line shifts // Spectochimica Acta. A. 2019. V. 210. P. 275–280.
  9. Starikov V.I., Protasevich A.E. Effective polarizability operator for X2Y-type molecules. Application to line width and line shift calculations of H2O // J. Mol. Structure. 2003. V. 646. P. 81–88.
  10. Hoy A.R., Mills I.M., Strey G. Anharmonic force constant calculations // Mol. Phys. 1972. V. 24. P. 1265–1290.
  11. Murphy W.F. The ro-vibrational Raman spectrum of water vapour n2 and 2n2 // Mol. Phys. 1977. V. 33. P. 1701–1714.
  12. Murphy W.F. The ro-vibrational Raman spectrum of water vapour n1 and n3 // Mol. Phys. 1978. V. 36. P. 727–732.
  13. Avila G., Fernandez J.M., Mate B., Tejeda G., Montero S. Ro-vibrational Raman cross sections of water vapor in the OH stretching region // J. Mol. Spectrosc. 1999. V. 196. P. 77–92.
  14. Avila G., Tejeda G., Fernandez J.M., Montero S. The Raman spectra and cross sections of the n2 band of H2O, D2O, and HDO // J. Mol. Spectrosc. 2004. V. 223. P. 166–180.
  15. Avila G., Tejeda G., Fernandez J.M., Montero S. The rotational Raman spectra and cross sections of H2O, D2O, and HDO // J. Mol. Spectrosc. 2003. V. 220. P. 259–275.
  16. Avila G. Ab initio dipole polarizability surfaces of water molecule: Static and dynamic at 514.5 nm // J. Chem Phys. 2005. V. 122. 144310.
  17. Loboda O., Ingrosso F., Ruiz-Lopez M.F., Reis H., Millot C. Dipole and quadrupole polarizabilities of the water molecule as a function of geometry // J. Comput. Chem. 2016. V. 37. P. 2125–2132.
  18. Hougen J.T., Bunker P.R., Johns J.W.G. The vibration-rotation problem in triatimic molecules for a large-amplitude bending vibration // J. Mol. Spectrosc. 1970. V. 34. P. 136–172.
  19. Starikov V.I. n2 – zavisimost' vrashchatel'nyh vkladov v effektivnyj dipol'nyj moment molekuly N2O i ih vliyanie na koeffitsienty ushireniya i sdvig linij davleniem bufernyh gazov // Optika i spektroskopiya. 2019. V. 127. P. 200–206.
  20. Makushkin Yu.S., Tyuterev Vl.G. Metody teorii vozmushchenij i effektivnye gamil'toniany v molekulyarnoj spektroskopii. Novosibirsk: Nauka, 1984. 240 p.
  21. Robert D., Bonamy J. Short range force effects in semiclassical molecular line broadening calculations // J. Phys. (Paris). 1979. V. 40. P. 923–943.
  22. Leavitt R.P. Pressure broadening and shifting in microwave and infrared spectra of molecules of arbitrary symmetry: An irreducible tensor approach // J. Chem. Phys. 1980. V. 73, N 11. P. 5432–5450.
  23. Starikov V.I., Lavrent'eva N.N. Stolknovitel'noe ushirenie spektral'nyh linij pogloshcheniya molekul atmosfernyh gazov. Tomsk: Izd-vo IOA SO RAN, 2006. 303 p.
  24. Schmucker N., Trojan Ch., Giesen T., Schielder R., Yamada K.M.T., Winnewisser G. Pressure broadening and shift of some H2O lines in the n2 band: Revisited. // J. Mol. Spectrosc. 1997. V. 184. P. 250–256.
  25. Toth R.A. Measurements and analysis (using empirical functions for widths) of air- and self-broadening parameters of H2O // J. Quant. Spectrosc. Radiat. Transfer. 2005. V 94. P. 1–50.