Vol. 33, issue 02, article # 10

Serdyukov V.I., Sinitsa L.N., Lugovskoy A.A., Emelyanov N.M. Optical cell cooled by liquid nitrogen to study absorption spectra at a Fourier spectrometer. // Optika Atmosfery i Okeana. 2020. V. 33. No. 02. P. 146–152 [in Russian].
Copy the reference to clipboard

A low-temperature 17.5 cm long vacuum cell with removable quartz, ZnSe, and KBr windows was designed for working with the Bruker IFS 125M high-resolution Fourier spectrometer. The cell provides a threshold absorption sensitivity of about 10-6 cm-1. The cell makes it possible to record the absorption spectra of gases in the region 1000–20000 cm-1 in the temperature range from 108 to 298 K with an error of ± 0.1 K.
The 12CH4 absorption spectra in the range from 9000 to 9200 cm-1 at a pressure of 300 mbar and a spectral resolution of 0.03 cm-1 were recorded using an IFS 125M Fourier spectrometer at 298 and 108 K. The empirical values of the lower state energy levels were obtained from the ratios of line intensities measured at different temperatures.


Fourier spectroscopy, absorption spectrum, methane


  1. Sepulveda E., Schneider M., Hase F. Long-term validation of tropospheric column-averaged CH4 mole fractions obtained by mid-infrared ground-based FTIR spectrometry // Atmos. Meas. Tech. 2012. V. 5. P. 1425–1441.
  2. Crutzen P.J. Geophysiology of Amazonia: Vegetation and Climate Interactions. New York: Wiley, 1987. 526 р.
  3. Goody R.M., Yung Y.L. Atmospheric Radiation: Theoretical Basis. New York: Oxford University Press, 1995. 544 р.
  4. Goody R. Atmospheres of major planets // J. Atmos. Sci. 1969. V. 26. P. 997–1001.
  5. Combes M., Bergh C.D., Lecacheus J., Maillard J.P. Identification of 13CH4 in atmosphere of Saturn // Astron. Astrophys. 1975. V. 40. P. 81–84.
  6. Widemann G., Bjoraker G.L., Jennings D.E. Detection of 13CH4 in Jupiter atmosphere // J. Astrophys. 1991. V. 383. P. 29–32.
  7. Encrenaz T. Remote sensing analysis of solar-system objects // Phys. Scr. 2008. V. 130.
  8. Sung K., Mantz A.W., Smith M.A.H. Cryogenic absorption cells operating inside a Bruker IFS-125HR: First results for 13CH4 at 7 µm // J. Mol. Spectrosc. 2010. V. 262. P. 122–134.
  9. Mantz A.W., Sung K., Brown L.R. A cryogenic Herriott cell vacuum-coupled to a Bruker IFS-125HR // J. Mol. Spectrosc. 2014. V. 304. P. 12–24.
  10. Jennings D.E., Hillman J.J. Shock isolator for diode-laser operations on a closed-cycle refrigerator // Rev. Sci. Instrum. 1977. V. 48. P. 1568–1569.
  11. Mantz A.W., Malathy Devi V., Benner D.C., Smith M.A.H., Predoi-Cross A., Dulick M. A multispectrum analysis of widths and shifts in the 2010–2260 cm-1 region of 12C16O broadened by helium at temperatures between 80–297 K // J. Mol. Struct. 2005. V. 742. P. 99–110.
  12. Kassi S., Gao B., Romanini D., Campargue A. The near infrared (1.30–1.70 mm) absorption spectrum of methane down to 77 K // Phys. Chem. Chem. Phys. 2008. V. 10. P. 4410.
  13. Campargue A., Wang Le, Kassi S., Masat M., Votava O. Temperature dependence of the absorption spectrum of CH4 by high resolution spectroscopy at 81 K: (II) The icosad region (1.49–1.30 µm) // J. Quant. Spectrosc. Radiat. Transfer. 2010. V. 111. P. 1141.
  14. Serdyukov V.I., Sinitsa L.N., Lugovskoj A.A., Emel'yanov N.M. Nizkotemperaturnaya kyuveta dlya issledovaniya spektrov pogloshcheniya parnikovyh gazov // Optika atmosf. i okeana. 2018. V. 31, N 11. P. 930–936; Serdyukov V.I., Sinitsa L.N., Lugovskoi A.A., Emelyanov N.M. Low-temperature cell for studying absorption spectra of greenhouse gases // Atmos. Ocean. Opt. 2019. V. 32, N 2. P. 220–226.
  15. Margolis J.S., Fox K. Infrared absorption spectrum of CH4 at 9050 cm-1 // J. Chem. Phys. 1968. V. 49. P. 2451.
  16. Maillard J.P., Combes M., Encrenaz Th., Lecacheux J. New infrared spectra of the Jovian planets from 12000 to 4000 cm by Fourier transform spectroscopy // Astrophys. 1973. V. 25. P. 219–232.
  17. Sinitsa L.N. Vysokochuvstvitel'naya lazernaya spektroskopiya vysokih kolebatel'no-vrashchatel'nyh sostoyanij molekul: dis. ... dokt. fiz.-mat. nauk. Tomsk, In-t optiki atmosfery i okeana imeni V.E. Zueva SO RAN, 1988. 420 p.
  18. Kruglova T.V., Shcherbakov A.P. Automated line search in molecular spectra based on nonparametric statistical methods: Regularization in estimating parameters of spectral lines // Opt. Spectrosc. 2011. V. 111. P. 353–356.
  19. Michael Hippler, Martin Quack. High-resolution Fourier transform infrared and cw-diode laser cavity ring down spectroscopy of the n2 + 2n3 band of methane near 7510 cm-1 in slit jet expansions and at room temperature // J. Chem. Phys. 2002. V. 116. P. 6045–6055.
  20. Nikitin A.V., Protasevich A.E., Rey M., Serdyukov V.I., Sinitsa L.N., Lugovskoy A., Tyuterev V.I.G. Improved line list of 12CH4 in the 8850–9180 cm-1 region // J. Quant. Spectrosc. Radiat. Transfer. 2019. V. 232. Р. 106646.