Vol. 32, issue 12, article # 8

Shikhovtsev A.Yu., Kiselev A.V., Kovadlo P.G., Kolobov D.Yu., Lukin V.P., Tomin V.E. The method for determining the altitudes of atmospheric layers with strong turbulence. // Optika Atmosfery i Okeana. 2019. V. 32. No. 12. P. 994–1000 [in Russian].
Copy the reference to clipboard
Abstract:

The modern tasks concerning the methods for recovering the altitude profiles of the atmospheric turbulence are discussed. An alternative method to the Slodar-technique is suggested for determining the altitudes of atmospheric layers characterized by strong turbulence. The method is based on estimation of the space-time crosscovariances between local wavefront slopes on subapertures spaced in the telescope field of view with a known angular displacement of an object observed due to the Sun motion. The turbulence characteristics are estimated for the Large Solar Vacuum Telescope site.

Keywords:

atmospheric turbulence, wavefront, telescope, solar images, profiles of the turbulence

References:

  1. Nosov V.V., Lukin V.P., Nosov E.V., Torgaev A.V. Fazovyj opticheskij metod izmereniya vysotnogo profilya atmosfernoj turbulentnosti // Izv. vuzov. Fizika. 2016. V. 59, N 12-2. P. 138–142.
  2. Blary F., Ziad A., Borgnino J., Fanteı-Caujolle Y., Aristidi E., Lanteri H. Monitoring atmospheric turbulence profiles with high vertical resolution using PML/PBL instrument // Proc. SPIE. 2014. V. 9145.
  3. Butterley T., Wilson R., Sarazin M. Determination of the profile of atmospheric optical turbulence strength from SLODAR data // Mon. Notices Royal Astron. Soc. 2006. V. 369. P. 835–845.
  4. Goodwin M., Jenkins C., Lambert A. Improved detection of atmospheric turbulence with SLODAR // Opt. Express. 2007. V. 15, N 22. P. 14844–14860.
  5.  Kellerer A., Gorceix N., Marino J., Cao W., Goode P.R. Profiles of the daytime atmospheric turbulence above Big Bear solar observatory // Astron. Astrophys. 2012. V. 542, N 2. P. 10.
  6.  Kornilov V., Tokovinin A., Vozyakova O., Zaitsev A., Ahatsky N., Potanin S., Sarazin M. MASS: A monitor of the vertical turbulence distribution // Proc. SPIE. 2003. V. 4839.
  7.  Love G.D., Dunlop C.N., Patrick S., Saunter C.D., Wilson R.W., Wright C. SLODAR as turbulence monitor for free space optical communications // Proc. SPIE. 2006. V. 6018.
  8.  Butterley T., Osborn J., Sarazin M., Wilson R. Nowcasting of the surface layer of turbulence at Paranal Observatory // AO4ELT5 Proc.: Tenerife, Canary Islands, Spain, 2017.
  9.  Sarazin M., Butterley T., Tokovinin A., Travouillon T., Wilson R. The Tololo SLODAR Campaign // ESO/CTIO/Durham internal report. 2005.
  10.  Townson M.J., Kellerer A., Saunter C.D. Improved shift estimates on extended Shack–Hartmann wavefront sensor images // Mon. Not. Roy. Astron. Soc. 2015. V. 452, iss. 4. P. 4022–4028.
  11.  Townson M.J., Saunter C.D. Reducing the Field of View in Correlating Wavefront Sensors for Solar Adaptive Optics // AO4ELT5 Proc.: Tenerife, Canary Islands, Spain, 2017.
  12.  Wilson R.W. SLODAR: Measuring optical turbulence altitude with a Shack–Hartmann wavefront sensor // Mon. Not. R. Astron. Soc. 2002. V. 337. P. 103–108.
  13.  Nosov V.V., Grigor'ev V.M., Kovadlo P.G., Lukin V.P., Nosov E.V., Torgaev A.V. Kogerentnaya turbulentnost' na territorii Bajkal'skoj astrofizicheskoj observatorii // Izv. vuzov. Fizika. 2012. V. 55, N 9-2. P. 204–205.
  14.  Antoshkin L.V., Botygina N.N., Bolbasova L.A., Emaleev O.N., Konyaev P.A., Kopylov E.A., Kovadlo P.G., Kolobov D.Yu., Kudryashov A.V., Lavrinov V.V., Lavrinova L.N., Lukin V.P., Chuprakov S.A., Selin A.A., Shikhovtsev A.Yu. Adaptive optics system for solar telescope operating under strong atmospheric turbulence // Atmos. Ocean. Opt. 2017. V. 30, N 3. P. 291–299.
  15.  Bolbasova L.A., Shikhovtsev A.Yu., Kopylov E.A., Selin A.A., Lukin V.P., Kovadlo P.G. Daytime optical turbulence and wind speed distributions at the Baykal Astophysical Observatory // Mon. Notices Royal Astron. Soc. 2019. V. 482. P. 2619–2626.
  16. Botygina N.N., Kovadlo P.G., Kopylov E.A., Lukin V.P., Tuev M.V., Shikhovtsev A.Yu. Estimation of the astronomical seeing at the large solar vacuum telescope site from optical and meteorological measurements // Atmos. Ocean. Opt. 2014. V. 27, N 2. P. 142–146.
  17. Konyaev P.A., Kopulov E.A., Kovadlo P.G., Lukin V.P., Selin A.A., Shikhovtsev A.Yu. Works on the set of data measuring turbulence in different seasons of the year // Proc. SPIE. 2017. V. 10466.
  18. Shikhovtsev A.Yu., Kovadlo P.G. Calculation of the profile of turbulent inhomogeneities of the air refraction index // Proc. SPIE. 2014. V. 9292.
  19. Kovadlo P.G., Lukin V.P., Shihovtsev A.Yu. Razvitie modeli turbulentnoj atmosfery na astroploshchadke Bol'shogo solnechnogo vakuumnogo teleskopa v prilozhenii k adaptatsii izobrazhenij // Optika atmosf. i okeana. 2018). V. 31, N 11. P. 906–910.
  20. Banakh V.A., Smalikho I.N. Lidar observations of atmospheric internal waves in the boundary layer of the atmosphere on the coast of Lake Baikal // J. Atmos. Meas. Tech. 2016. V. 9. P. 5239–5248.
  21. Banakh V.A., Smalikho I.N. Lidar study of wind turbulence, low level jet streams, and atmospheric internal waves in the boundary layer of atmosphere // The Europ. Phys. J. Conf. 2018. V. 176(1). P. 1–4.
  22. Sarazin M., Roddier F. The ESO differential image motion monitor // Astron. Astrophys. 1990. V. 227. P. 294.

Back