Vol. 32, issue 10, article # 9

Timofeev Yu.M., Virolainen Ya.A., Polyakov A.V. Estimates of variations in CO2 radiative forcing in the last century and in future. // Optika Atmosfery i Okeana. 2019. V. 32. No. 10. P. 856–859 [in Russian].
Copy the reference to clipboard

Based on the analysis of the radiative transfer equation in the integral form, we investigate the physical causes of changes in the Earth outgoing thermal radiation (OTR) due to increasing atmospheric CO2 content. CO2 concentration growth can lead to both increase and decrease in various components of the OTR depending on the optical density of a spectral interval. We calculate and analyze the spectra of OTR fluxes in the range  3–30 µm for five climate atmospheric models and various concentrations of carbon dioxide from pre-industrial (280 ppm) to present (407 ppm) and projected in the future values (800 and 1200 ppm). Seasonal and spatial variations in CO2 radiative forcing (RF) currently reach about 20% and 40%, respectively. Comparison of OTR measurements with different instruments in different years (for example, SI-1 in 1977 and 1979 and IKFS-2 in 2015–2017) demonstrates a decrease in the OTR values in the CO2 absorption bands caused by the upward displacement of radiating layers in the troposphere. We estimate the RF due to the growth of CO2 concentrations from pre-industrial to present values to be in the range -(0.94–1.62) W/m2.


radiative forcing, carbon dioxide, outgoing thermal radiation, radiative balance, satellite monitoring


  1. Forster P., Ramaswamy V., Artaxo P., Berntsen T., Betts R., Fahey D.W., Haywood J., Lean J., Lowe D.C., Myhre G., Nganga J., Prinn R., Raga G., Schulz M., van Dorlald R. 2007: Changes in atmospheric constituents and in radiative forcing // Climate Change 2007: The Phys. Sci. Basis. contribution of working groups I to the fourth assessment report of the intergovernmental panel on climate change / S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M. Tignor, H.L. Miller (eds.) Cambridge, New York: Cambridge University Press. P. 95–116.
  2. IPCC. Climate Change: 2013 The Physical Science Basis, working group I contribution to the fifth assessment report of the intergovernmental panel on climate change. URL: http://www.ipcc.ch/report/ar5/wg1/docs/WGIAR5_SPM_brochure_en.pdf (last access: 21.04.2019)
  3. Hansen J., Lacis A., Ruedy R., Sato M., Wilson H. How sensitive is the world's climate? // Natl. Geog. Soc. Res. Exploration. 1993. N 9. P. 142–158.
  4. Harries J.E., Brindley H.E., Sagoo P.J., Bantges R.J. Increases in greenhouse forcing inferred from the outgoing longwave radiation spectra of the Earth in 1970 and 1997 // Nature. 2001. V. 410. P. 355–357.
  5. Timofeev Yu.M., Vasil'ev A.V. Teoreticheskie osnovy atmosfernoj optiki. SPb: Nauka, 2003. 475 p.
  6. Clough S.A., Shephard M.W., Mlawer E.J., Delamere J.S., Iacono M.J., Cady-Pereira K., Boukabara S., Brown R.D. Atmospheric radiative transfer modeling: a summary of the AER codes // J. Quant. Spectrosc. Radiat. Trans. 2005. V. 91. P. 233–244.
  7. Anderson G.P., Clough S.A., Kneizys F.X., Chetwynd J.H., Shettle E.P. AFGL Atmospheric Constituent Profiles (0–120 km) // Environ. Res. 1986. N 954. 43 p.
  8. Bantges R.J., Brindley H.E., Chen X.H., Huang X.L., Harries J.E., Murray J.E. On the detection of robust multidecadal changes in Earth's outgoing longwave radiation spectrum // J. Climate. 2016. V. 29, N 13. P. 4939–4947.
  9. Timofeev YU.M., Polyakov A.V., Kozlov D.A., Zavelevich F.S., Golovin Yu.M., Deler V., Ertel' D., Shpenkukh D. Sopostavlenie spektrov ukhodyashchego teplovogo IK izlucheniya raznykh let // Issled. Zemli iz kosmosa. 2018. N 5. P. 65–72.
  10. Kempe V., Oertel D., Schuster R., Becker-Ross H., Jahn H. Absolute IR-spectra from the measurement of Fourier-spectrometers aboard Meteor 25 and 28 // Acta Astronautica. 1980. V. 7, N 12. P. 1403–1416.
  11. Golovin Yu.M., Zavelevich F.S., Nikulin A.G., Kozlov D.A., Monakhov D.O., Kozlov I.A., Arkhipov S.A., Tselikov V.A., Romanovskij A.S. Bortovye infrakrasnye fur'e-spektrometry dlya temperaturno-vlazhnostnogo zondirovaniya atmosfery Zemli // Issled. Zemli iz kosmosa. 2013. N 6. P. 25–37.
  12.  Kozlov D.A., Timofeev Yu. M., Polyakov A. V., Kozlov I. A., Deler V., Ortel' D., Shpenkukh D. Metodika perescheta spektrov teplovogo izlucheniya atmosfery razlichnogo spektral'nogo razresheniya dlya vzaimnogo sopostavleniya izmerenij bortovykh infrakrasnykh fur'e-spektrometrov // Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa. 2018. V. 15, N 1. P. 52–60.
  13. Timofeev Yu.M., Berezin I.A., Virolajnen Ya.A., Makarova M.V., Polyakov A.V., Poberovskij A.V., Filippov N.N., Foka S.Ch. Prostranstvenno-vremennye variatsii soderzhaniya CO2 po dannym sputnikovykh i nazemnykh izmerenij vblizi Sankt-Peterburga // Izv. RAN. FAO. 2019. V. 55, N 1. P. 65–72.