Vol. 32, issue 10, article # 5

Veretennikov V.V., Men'shchikova S.S. Correction of the aerosol refractive index using the regression relationship between the volume concentration of particles and measurements of aerosol optical depth. // Optika Atmosfery i Okeana. 2019. V. 32. No. 10. P. 832–840 [in Russian].
Copy the reference to clipboard
Abstract:

A method of regression correction of the real part of the refractive index of the aerosol matter is suggested for solving the inverse problem of spectral measurements of aerosol optical depth (AOD) t(l). The correction is based on the use of similarity relations that must be fulfilled for the microstructure parameters of the scattering media with equivalent spectral extinction at variations in the refractive index of the aerosol. For the correction, the minimization of the discrepancy between the volume concentrations of the aerosol retrieved from the solution of the inverse problem and calculated using the regression equations, which are constructed for a certain reference period, is carried out by the refractive index. The results of testing the method are presented based on the AOD measurements with a multiwave sun photometer, performed at IAO SB RAS during an annual cycle of observations.

Keywords:

aerosol optical depth, inverse problems, aerosol microstructure, refractive index, regression

References:

  1. Fuzzi S., Baltensperger U., Carslaw K., Decesari S., Denier van der Gon H., Facchini M.C., Fowler D., Koren I., Langford B., Lohmann U., Nemitz E., Pandis S., Riipinen I., Rudich Y., Schaap M., Slowik J.G., Spracklen D.V., Vignati E., Wild M., Williams M., Gilardoni S. Particulate matter, air quality and climate: lessons learned and future needs // Atmos. Chem. Phys. 2015. V. 15. P. 8217–8299. URL: https://doi.org/10.5194/ acp-15-8217–2015.
  2. IPCC: Fourth Assessment Report Climate Change 2007: The Physical Science Basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change / S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M. Tignor, H.L. Miller (eds.) Cambridge, United Kingdom, New York: Cambridge University Press, 2007. 996 p.
  3. Boucher O., Randall D., Artaxo P., Bretherton C., Feingold G., Forster P., Kerminen V.-M., Kondo Y., Liao H., Lohmann U., Rasch P., Satheesh S.K., Sherwood S., Stevens B., Zhang X.Y. Climate Change 2013: The Physical Science Basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change / T.F. Stocker, D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex, P.M. Midgley (eds.). Cambridge, United Kingdom, New York: Cambridge University Press, 2013. DOI: 10.1017/CBO9781107415324
  4. Belov V.V. Peredatochnye svojstva vneshnikh kanalov i izoplanarnost' izobrazhenij v sistemakh videniya // Optika atmosf. i okeana. 2009. V. 22, N 12. P. 1101–1107; Belov V.V. Optical transfer properties of external channels and image isoplanarity in vision systems // Atmos. Ocean. Opt. 2010. V. 23, N 2. P. 81–87.
  5.  Belov V.V., Abramochkin V.N., Gridnev Yu.V., Kudryavtsev A.N., Kulaev S.P., Tarasenkov M.V., Troitskij V.O., Fedosov A.V. Bistaticheskaya optiko-elektronnaya svyaz' v UF-diapazone dlin voln. Polevye eksperimenty v 2016 year. // Optika atmosf. i okeana. 2017. V. 30, N 2. P. 111–114; Belov V.V., Abramochkin V.N., Gridnev Yu.V., Kudryavtsev A.N., Kozlov V.S., Rakhimov R.F., Shmargunov V.P., Tarasenkov M.V. Experimental study of the influence of optical characteristics of a medium on the image quality in optoelectronic systems with backscattered noise signal selection // Atmos. Ocean. Opt. 2017. V. 30, N 5. P. 429–434.
  6. Belov V.V., Abramochkin V.N., Gridnev Yu.V., Kudryavtsev A.N., Kozlov V.S., Rakhimov R.F., Shmargunov V.P., Tarasenkov M.V. Eksperimental'nye issledovaniya vliyaniya opticheskikh kharakteristik sredy na kachestvo izobrazheniya v OES videniya s selektsiej pomekhi obratnogo rasseyaniya // Optika atmosf. i okeana. 2017. V. 30, N 4. P. 285–290; Belov V.V., Abramochkin V.N., Gridnev Yu.V., Kudryavtsev A.N., Kozlov V.S., Rakhimov R.F., Shmargunov V.P., Tarasenkov M.V. Experimental study of the influence of optical characteristics of a medium on the image quality in opto­electronic systems with backscattered noise signal selection // Atmos. Ocean. Opt. 2017. V. 30, N 5. P. 429–434.
  7.  Belov V.V., Gridnev Yu.V., Kudryavtsev A.N., Tarasenkov M.V., Fedosov A.V. Optiko-elektronnaya svyaz' v UF-diapazone dlin voln na rasseyannom lazernom izluchenii // Optika atmosf. i okeana. 2018. V. 31, N 7. P. 559–562; Belov V.V., Gridnev Yu.V., Kudryavtsev A.N., Tarasenkov M.V., Fedosov A.V. Optoelectronic UV communication on scattered laser radiation // Atmos. Ocean. Opt. 2018. V. 31, N 6. P. 698–701.
  8.  Belov V.V., Gridnev Yu.V., Kapustin V.V., Kozlov V.S., Kudryavtsev A.N., Kuryachii M.I., Movchan A.K., Rakhimov R.F., Panchenko M.V., Shmargunov V.P. Eksperimental'naya otsenka chastotno-kontrastnykh kharakteristik aktivno-impul'snykh televizionnykh sistem videniya v usloviyakh povyshennoj mutnosti aerozol'nykh sred // Optika atmosf. i okeana. 2018. V. 31, N 9. P. 771–775; Belov V.V., Gridnev Yu.V., Kapustin V.V., Kozlov V.S., Kudryavtsev A.N., Kuryachii M.I., Movchan A.K., Rakhimov R.F., Panchenko M.V., Shmargunov V.P. Experimental estimation of frequency-contrast characteristics of active pulsed television systems under conditions of enhanced turbidity of aerosol media // Atmos. Ocean. Opt. 2019. V. 32, N 1. P. 103–108.
  9. WHO (2003). Health aspects of air pollution with particulate matter, ozone and nitrogen dioxide. World Health Organization, 2003. URL: http://www.euro.who.int/ document/e79097.pdf (last access: 11.05.2019)
  10. WHO. Regional Office for Europe. (2006). Air quality guidelines global update 2005: particulate matter, ozone, nitrogen, dioxide and sulfur dioxide. Copenhagen: WHO Regional Office for Europe URL: https://apps.who.int/ iris/handle/10665/107823 (last access: 11.05.2019)
  11. WHO (2013). Health effects of particulate matter. Policy implications for countries in Eastern Europe, Caucasus and central Asia. World Health Organization, 2013. URL: http://www.euro.who.int/en/health-topics/environment-and-health/air-uality/publications/ (last access: 11.05.2019)
  12. GAW Report, 153. WMO/GAW aerosol measurement procedures: guidelines and recommendations. 2003. (WMO TD No. 1178). 67 p.
  13. Rozenberg G.V. Opredelenie mikrofizicheskikh parametrov zolya po dannym kompleksnykh opticheskikh izmerenij // Izv. AN SSSR. Fiz. atmosf. i okeana. 1976. V. 12, N 11. P. 1159–1167.
  14. Tikhonov A.N., Arsenin V.Ya. Metody resheniya nekorrektnykh zadach. M.: Nauka, 1974. 224 p.
  15. Zuev V.E., Krekov G.M. Opticheskie modeli atmosfery. L.: Gidrometeoizdat. 1986. 256 p.
  16. Gorchakov G.I., Emilenko A.S., Lykosov E.A., Tolstobrov V.G. Ob opredelenii koeffitsienta prelomleniya chastits po polyarizatsii rasseyannogo tumannoj dymkoj sveta // Izv. AN SSSR. Fiz. atmosf. i okeana. 1976. V. 12, N 2. P. 144–150.
  17. Gorchakov G.I., Gorchakova I.A., Lykosov E.A., Tolstobrov V.G., Turovtseva L.S. Opredelenie koeffitsienta prelomleniya i mikrostruktury tumannoj dymki // Izv. AN SSSR. Fiz. atmosf. i okeana. 1976. V. 12, N 6. PС. 612–619.
  18.  Zhao F., Gong Z., Hu H., Tanaka M., Hayasaka T. Simultaneous determination of the aerosol complex index of refraction and size distribution from scattering measurements of polarized light // Appl. Opt. 1997. V. 36. P. 7992–8001.
  19.  Zhao F. Determination of the complex index of refraction and size distribution of aerosols from polar nephelometer measurements // Appl. Opt. 1999. V. 38. P. 2331–2336.
  20.  Veretennikov V.V., Naats I.E., Panchenko M.V., Fadeev V.Ya. K opredeleniyu mikrostruktury i pokazatelya prelomleniya atmosfernykh dymok iz polyarizatsionnykh kharakteristik svetorasseyaniya // Izv. AN SSSR. Fiz. atmosf. i okeana. 1978. V. 14, N 12. P. 1313–1317.
  21. Veretennikov V.V., Kozlov V.S., Naats I.N., Fadeev V.Ya. Optical studies of smoke aerosols: an inversion method and its applications // Opt. Lett. 1979. V. 4. P. 411–413.
  22. Tanaka M., Nakajima T., Takamura T. Simultaneous determination of complex refractive index and size distribution of airborne and water-suspended particles from light scattering measurements // J. Meteorol. Soc. Jpn. 1982. V. 60, N 6. P. 1259–1271.
  23. Verhaege C., Shcherbakov V., Personne P. Limitations on retrieval of complex refractive index of spherical particles from scattering measurements // J. Quant. Spectrosc. Radiat. Transf. 2008. V. 109, N 14. P. 2338–2348.
  24. Verhaege C., Shcherbakov V., Personne P. Retrieval of complex refractive index and size distribution of spherical particles from Dual-Polarization Polar Nephelometer data // JQSRT. 2009. V. 110, N 14–16. P. 2338–2348.
  25. Rakhimov R.F., Kozlov V.S., Shmargunov V.P. O vremennoj dinamike kompleksnogo pokazatelya prelomleniya i mikrostruktury chastits po dannym spektronefelometricheskikh izmerenij v smeshannykh dymakh // Optika atmosf. i okeana. 2011. V. 24, N 10. P. 887–897; Rakhimov R.F., Kozlov V.S., Shmargunov V.P. On time dynamics of the complex refractive index and particle microstructure according to data of spectronephelometer measurements in mixed-composition smokes // Atmos. Ocean. Opt. 2012. V. 25, N 1. P. 51–61.
  26. Rakhimov R.F., Kozlov V.S., Tumakov A.G., Shmargunov V.P. Opticheskie i mikrofizicheskie svojstva smeshannogo dyma po dannym polyarizatsionnykh spektronefelometricheskikh izmerenij // Optika atmosf. i okeana. 2014. V. 27, N 1. P. 59–68.
  27. Kozlov V.S., Rakhimov R.F., Shmargunov V.P. Izmenchivost' kondensatsionnykh svojstv smeshannogo dyma goreniya biomassy na razlichnykh stadiyakh ego evolyutsii // Optika atmosf. i okeana. 2017. V. 30, N 10. P. 846–855; Kozlov V.S., Rakhimov R.F., Shmargunov V.P. Variations in condensation properties of mixed smoke from biomass burning at different smoke evolution stages // Atmos. Ocean. Opt. 2018. V. 31, N 1. P. 9–18.
  28. Nakajima T., Tanaka M., Yamauchi T. Retrieval of the optical properties of aerosols from aureole and extinction data // Appl. Opt. 1983. V. 22. P. 2951–2959.
  29. Romanov P., O’Neill N.T., Royer A., McArthur B.L.J. Simultaneous retrieval of aerosol refractive index and particle size distribution from ground-based measurements of direct and scattered solar radiation // Appl. Opt. 1999.V. 38. P. 7305–7320.
  30. Dubovik O., King M.D. A flexible inversion algorithm for retrieval of aerosol optical properties from sun and sky radiance measurements // J. Geophys. Res. 2000. V. 105, N D16. P. 20673–20696.
  31. Dubovik O., Smirnov A., Holben B.N., King M.D., Kaufman Y.J., Eck T.F., Slutsker I. Accuracy assessments of aerosol optical properties retrieved from Aerosol Robotic Network (AERONET) Sun and sky radiance measurements // J. Geophys. Res. 2000. V. 105, N D8. P. 9791–9806.
  32. Li Z., Goloub P., Devaux C., Gu X., Deuzé J.-L., Qiao Y., Zhao F. Retrieval of aerosol optical and physical properties from ground-based spectral, multi-angular, and polarized sun-photometer measurements // Remote Sens. Environ. 2006. V. 101, N 4. P. 519–533.
  33. Gorchakov G.I., Emilenko A.S., Sviridenkov M.A. Odnoparametricheskaya model' prizemnogo aerozolya // Izv. AN SSSR. Fiz. atmosf. i okeana. 1981. V. 17, N 1. P. 39–49.
  34. Veretennikov V.V., Kabanov M.V., Panchenko M.V. Mikrofizicheskaya interpretatsiya odnoparametricheskoj modeli polyarizatsionnykh indikatris (dymka pribrezhnogo rajona) // Izv. AN SSSR. Fiz. atmosf. i okeana. 1986. V. 22, N 10. P. 1042–1049.
  35. Sviridenkov M.A. Korrelyatsionnye svyazi mezhdu opticheskimi kharakteristikami i mikrostrukturoj prizemnogo aerozolya // Optika atmosf. i okeana. 2003. V. 16, N 5–6. P. 418–421.
  36. Lysenko S.A., Kugejko M.M. Regressionnyj podkhod k analizu informativnosti i interpretatsii dannykh aerozol'nykh opticheskikh izmerenij // Zhurn. prikl. spektroskopii. 2009. V. 76, N 6. P. 876–883.
  37. Lysenko S.A., Kugejko M.M. Metodika opredeleniya mikrofizicheskikh parametrov stratosfernogo aerozolya po rezul'tatam sputnikovogo i nazemnogo mnogochastotnogo zondirovaniya // Issled. Zemli iz kosmosa. 2011. N 6. P. 21–33.
  38. Lysenko S.A., Kugejko M.M. Spektronefelometricheskie metody opredeleniya mikrofizicheskikh kharakteristik pyli v aspiratsionnom vozdukhe i otkhodyashchikh gazakh tsementnykh proizvodstv // ZHurn. prikl. spektroskopii. 2012. V. 79, N 1. P. 66–76.
  39. Lysenko S.A., Kugejko M.M. Nefelometricheskij metod izmereniya massovykh kontsentratsij gorodskikh aerozolej i ikh respirabel'nykh fraktsij // Optika atmosf. i okeana. 2014. V. 27, N 5. P. 435–442; Lisenko S.A., Kugeiko M.M. Nephelometric method for measuring mass concentrations of urban aerosols and their respirable fractions // Atmos. Ocean. Opt. 2014. V. 27, N 6. P. 587–595.
  40. Veretennikov V.V., Men'shchikova S.S. Godovoj tsikl v izmenchivosti mikrostrukturnykh parametrov aerozolya po dannym solnechnoj fotometrii // Optika atmosf. i okeana. 2014. V. 27, N 12. P. 1035–1041; Veretennikov V.V., Men’shchikova S.S. Annual cycle in the variability of aerosol microstructure parameters according to solar photometry data // Atmos. Ocean. Opt. 2015. V. 28, N 2. P. 126–132.
  41. Veretennikov V.V. Vosstanovlenie mikrostrukturnykh parametrov grubodispersnogo aerozolya s ispol'zovaniem ikh regressionnykh svyazej so spektral'nym oslableniem sveta v IK-diapazone // Optika atmosf. i okeana. 2017. V. 30, N 8. P. 696–704; Veretennikov V.V. Retrieval of microstructure parameters of coarse-mode aerosol using their regression relationships with spectral extinction of light in the IR // Atmos. Ocean. Opt. 2017. V. 30, N 6. P. 555–563.
  42. Veretennikov V.V., Men'shchikova S.S. Osobennosti vosstanovleniya mikrostrukturnykh parametrov aerozolya iz izmerenij aerozol'noj opticheskoj tolshchiny. Part I. Metodika resheniya obratnoj zadachi // Optika atmosf. i okeana. 2013. V. 26, N 4. P. 306–312; Veretennikov V.V., Men’shchikova S.S. Features of retrieval of microstructural parameters of aerosol from measurements of aerosol optical depth. Part I. Technique for solving the inverse problem // Atmos. Ocean. Opt. 2013. V. 26, N 6. P. 473–479.
  43. URL: https://aeronet.gsfc.nasa.gov/ (last access: 11.04.2019)
  44. Veretennikov V.V. Mezhgodovaya izmenchivost' mikrostrukturnykh parametrov aerozolya po dannym solnechnoj fotometrii v Tomske // Optika atmosf. i okeana. 2017. V. 30, N 8. P. 705–715; Veretennikov V.V. Interannual variations in aerosol microstructure parameters according to data of sun photometer measurements in Tomsk // Atmos. Ocean. Opt. 2017. V. 30, N 6. P. 564–573.
  45. Van de Khyulst G. Rasseyanie sveta malymi chastitsami. M.: IL, 1961. 536 p.
  46. Veretennikov V.V. Sovmestnoe opredelenie mikrostruktury i pokazatelya prelomleniya aerozolya po dannym solnechnoj fotometrii // Optika atmosf. i okeana. 2007. V. 20, N 3. P. 214–221.
  47. Veretennikov V.V. Reconstruction of microstructure parameters of the coarsely dispersed aerosol from spectral measurements of the aerosol optical thickness during a one-year observation period from their regression relations using a finite sample // Proc. SPIE. 23 Intern. Sympos. Atmos. Ocean Opt.: Atmos. Phys. 2017. V. 10466. P. 10466-170. 10466 3L.
  48. URL: http://lop.iao.ru/RU/tor/MeteoandGas/ (last access: 11.04.2019)

Back