Vol. 32, issue 09, article # 3

Perevalov V.I., Ponomarev Yu.N., Ptashnik I.V., Sinitsa L.N. High-resolution molecular spectroscopy at IAO SB RAS. Current status of theoretical and experimental investigations. // Optika Atmosfery i Okeana. 2019. V. 32. No. 09. P. [in Russian].
Copy the reference to clipboard
Abstract:

Results of high-resolution molecular spectroscopy investigations conducted at IAO SB RAS during the last five years are outlined in this brief review. We consider theoretical problems of vibrational-rotational spectra of basic molecules of atmospheric gases, spectral line contours, problems of the atmospheric continuum absorption, and databases of molecular spectral characteristics in gas phase. In the section of experimental investigations, the main attention is devoted to results obtained by the Fourier spectroscopy methods using laser diodes as a radiation source, as well as results obtained at a Fourier spectrometer with a multipath 30-meter cell with computer control of optical path length under temperature and pressure variations of a gas under study.

Keywords:

high-resolution molecular spectroscopy, absorption spectra, laser spectroscopy, Fourier spectroscopy, atmospheric optics, information systems, spectral databases

Figures:
References:

  1. Zuev V.E., Makushkin Yu.S., Ponomarev Yu.N. Sovremennye problemy atmosfernoj optiki. Spektroskopiya atmosfery. V. 3. L.: Gidrometeoizdat, 1987. 248 p.
  1. Makogon M.M., Ponomarev Yu.N., Sinitsa L.N. Razvitie metodov i tekhniki lazernoj spektroskopii v Institute optiki atmosfery SO RAN // Optika atmosf. i okeana. 2009. V. 22, N 10. P. 958–965.
  2. Petrova T.M., Solodov A.M., Solodov A.A. Izmereniya koeffitsientov ushireniya i sdviga tsentrov linij pogloshcheniya vody v oblasti 8650–9020 cm-1 davleniem atmosfernykh gazov // Optika atmosf. i okeana. 2010. V. 23, N 7. P. 543–548.
  3. Klimeshina T.E., Petrova T.M., Rodimova O.B., Solodov A.A., Solodov A.M. Pogloshchenie SO2 za kantami polos v oblasti 8000 cm-1 // Optika atmosf. i okeana. 2013. V. 26, N 11. P. 925–931.
  4. Ptashnik I.V., Petrova T.M., Ponomarev Yu.N., Solodov A.A., Solodov A.M. Kontinual'noe pogloshchenie vodyanogo para v oknakh prozrachnosti blizhnego IK-diapazona // Optika atmosf. i okeana. 2014. V. 27, N 11. P. 970–975.
  5. Matvienko G.G., Perevalov V.I., Ponomarev Yu.N., Sinitsa L.N., Cherepanov V.N. Molekulyarnaya spektroskopiya vysokogo razresheniya v Tomske. Stanovlenie, razvitie, sovremennoe sostoyanie // Izv. vuzov. Fizika. 2016. V. 59, N 4. P. 20–31.
  6. Makushkin Yu.S., Tyuterev V.G. Metody vozmushchenij i effektivnye gamil'toniany v molekulyarnoj spektroskopii. Novosibirsk: Nauka, 1984. 239 p.
  7. Tyuterev Vl.G., Perevalov V.I. Generalized contact transformations of a Hamiltonian with a quasi-degenerate zero-order approximation // Chem. Phys. Lett. 1980. V. 74, N 3. P. 494–502.
  8. Perevalov V.I., Tyuterev Vl.G., Zhilinskii B.I. Reduced effective Hamiltonians for degenerate vibrational states of methane-type molecules // J. Mol. Spectrosc. 1984. V. 103, N 1. P. 147–159.
  9. Perevalov V.I., Tyuterev Vl.G., Zhilinskii B.I. Reduced Hamiltonian for 0100 and 0001 interacting states of tetrahedral XY4 molecules: Calculated r2J2- and r2J3-type parameters for ν2 and ν4 bands of methane // J. Mol. Spectrosc. 1985. V. 111, N 1. P. 1–19.
  10. Lobodenko E.I., Sulakshina O.N., Perevalov V.I., Tyuterev Vl.G. Reduced effective Hamiltonian for Coriolis-interacting nn and nt fundamentals of C3v molecules // J. Mol. Spectrosc. 1987. V. 126, N 1. P. 159–170.
  11. Perevalov V.I., Tyuterev Vl.G. Reduction of the centrifugal distortion Hamiltonian of asymmetric top molecules in the case of accidental  resonances: Two interacting states. Lower-order terms // J. Mol. Spectrosc. 1982. V. 96, N 1. P. 56–76.
  12. Perevalov V.I., Tyuterev V.G. Model' s odnoznachno vosstanavlivymi parametrami dlya sovmestnoj obrabotki dvuh rezoniruyushchih kolebatel'nyh sostoyanij. Angarmonicheskie rezonansy v molekulah tipa asimmetrichnogo volchka // Izv. vuzov. Fizika. 1982. V. 25, N 2. P. 108–112.
  13. Teffo J.-L., Sulakshina O.N., Perevalov V.I. Effective Hamiltonian for rovibrational energies and line intensities of carbon dioxide // J. Mol. Spectrosc. 1982. V. 96, N 1. P. 56–76.
  14. Teffo J.L., Perevalov V.I., Lyulin O.M. Reduced effective Hamiltonian for a global treatment of rovibrational energy levels of Nitrous Oxide //  J. Mol. Spectrosc. 1994. V. 168, N 2. P. 390–403.
  15. Perevalov V.I., Lobodenko E.I., Teffo J.L. Reduced effective Hamiltonian for global fitting of C2H2 rovibrational lines // Proc. SPIE. 1997. V. 3090. P. 143–149.
  16. Starikov V.I., Tyuterev V.G. Vnutrimolekulyarnye vzaimodejstviya i teoreticheskie metody v spektroskopii nezhestkih molekul. Tomsk: Spektr, 1997. 232 p.
  17. Starikov V.I., Tashkun S.A., Tyuterev V.G. Description of vibration-rotation energies of nonrigid triatomic molecules using the generating function method: Bending states and second triad of water // J. Mol. Spectrosc. 1992. V. 151, N 1. P. 130–147.
  18. Tyuterev V.G. The generating function approach to the formulation of the effective rotational Hamiltonian: A simple closed form model describing strong centrifugal distortion in water-type nonrigid molecules // J. Mol. Spectrosc. 1992. V. 151, N 1. P. 97–130.
  19. Duchko A.N., Bykov A.D. Resummation of divergent perturbation series: Application to the vibrational states of H2CO molecule // J. Chem. Phys. 2015. V. 143, N 15. P. 4102–4115.
  20. Tashkun S.A., Perevalov V.I., Teffo J.-L., Rothman L.S., Tyuterev Vl.G. Global fitting of 12C16O2 vibrational-rotational line positions using the effective Hamiltonian approach // J. Quant. Spectrosc. Radiat. Transfer. 1998. V. 60, N 5. P. 785–801.
  21. Tashkun S.A., Perevalov V.I., Teffo J.-L., Tyuterev Vl.G. Global fit of 12C16O2 vibrational-rotational line intensities using the effective operator approach // J. Quant. Spectrosc. Radiat. Transfer. 1999. V. 62, N 5. P. 571–598.
  22. Lyulin O.M., Perevalov V.I. Global modelling of vibration-rotation spectra of acetylene molecule // J. Quant. Spectrosc. Radiat. Transfer. 2016. V. 177. P. 59–74.
  23. Perevalov V.I., Tashkun S.A., Kochanov R.V., Liu A.-W., Campargue A. Global modeling of the 14N216O line positions within the framework of the polyad model of effective Hamiltonian // J. Quant. Spectrosc. Radiat. Transfer. 2012. V. 113, N 11. P. 1004–1012.
  24. Lukashevskaya A.A., Lyulin O.M., Perrin A., Perevalov V.I. Global'noe modelirovanie tsentrov spektral'nyh linij molekuly NO2 // Optika atmosf. i okeana. 2015. V. 28, N 1. P. 12–27.
  25. Sulakshina O.N., Borkov Yu.G. Global modelling of the experimental energy levels and observed line positions: Dunham coefficients for the ground state of 14N16O // Mol. Phys. 2018. V. 116. P. 3519–3529.
  26. Tashkun S.A., Perevalov V.I., Gamache R.R., Lamouroux J. CDSD-296, high resolution carbon dioxide spectroscopic databank: Version for atmospheric applications // J. Quant. Spectrosc. Radiat. Transfer. 2015. V. 152, N 1. P. 45–72.
  27. Tashkun S.A., Perevalov V.I., Kochanov R.V., Liu A.-W., Hu S.-M. Global fittings of 14N15N16O and 15N14N16O vibrational-rotational line positions using the effective Hamiltonian approach // J. Quant. Spectrosc. Radiat. Transfer. 2010. V. 111, N 9. P. 1089–1105.
  28. Tashkun S.A., Perevalov V.I., Karlovets E.V., Kassi S., Campargue A. High sensitivity cavity ring down spectroscopy of N2O near 1.22 mm: (II) 14N216O line intensity modeling and global fit of 14N218O line positions // J. Quant. Spectrosc. Radiat. Transfer. 2016. V. 176. P. 62–69.
  29. Lyulin O.M., Jacquemart D., Lacome N., Tashkun S.A., Perevalov V.I. Line parameters of 15N216O from Fourier transform measurements in the 5800–7600 cm-1 region and global fitting of line positions from 1000 to 7600 cm-1 // J. Quant. Spectrosc. Radiat. Transfer. 2010. V. 111, N 3. P. 345–356.
  30. Tashkun S.A., Perevalov V.I., Gamache R.R., Lamouroux J. CDSD-296, high resolution carbon dioxide spectroscopic databank: An update // J. Quant. Spectrosc. Radiat. Transfer. 2019. V. 228. P. 124–131.
  31. Tashkun S.A., Perevalov V.I., Teffo J-L., Bykov A.D., Lavrentieva N.N. CDSD-1000, the high-temperature carbon dioxide spectroscopic databank // J. Quant. Spectrosc. Radiat. Transfer. 2003. V. 82, N 1–4. P. 165–196.
  32. Tashkun S.A., Perevalov V.I. CDSD-4000: High-resolution, high-temperature carbon dioxide spectroscopic databank // J. Quant. Spectrosc. Radiat. Transfer. 2011. V. 112, N 9. P. 1403–1410.
  33. Lyulin O.M., Perevalov V.I. ASD-1000: High-resolution, high-temperature acetylene spectroscopic data-bank // J. Quant. Spectrosc. Radiat. Transfer. 2017. V. 201. P. 94–103.
  34. Tashkun S.A., Perevalov V.I., Lavrentieva N.N. NOSD-1000, the high-temperature nitrous oxide spectroscopic databank // J. Quant. Spectrosc. Radiat. Transfer. 2016. V. 177. P. 43–48.
  35. Lukashevskaya A.A., Lavrentieva N.N., Dudaryonok A.S., Perevalov V.I. NDSD-1000: High-resolution, high-temperature Nitrogen Dioxide Spectroscopic Databank // J. Quant. Spectrosc. Radiat. Transfer. 2016. V. 184. P. 205–217.
  36. Lukashevskaya A.A., Lavrentieva N.N., Dudaryonok A.S., Perevalov V.I. Corrected version of the NDSD-1000 databank // J. Quant. Spectrosc. Radiat. Transfer. 2016. V. 184. P. 205–217.
  37. Gordon I.E., Rothman L.S., Hill C., Kochanov R.V., Tan Y., Bernath P.F., Birk M., Boudon V., Campargue A., Chance K.V., Drouin B.J., Flaud J.-M., Gamache R.R., Hodges J.T., Jacquemart D., Perevalov V.I., Perrin A., Shine K.P., Smith M.A.H., Tennyson J., Toon G.C., Tran H., Tyuterev Vl.G., Barbe A., Császár A.G., Devi V.M., Furtenbacher T., Harrison J.J., Hartmann J.-M., Jolly A., Johnson T.J., Karman T., Kleiner I., Kyuberis A.A., Loos J., Lyulin O.M., Massie S.T., Mikhailenko S.N., Moazzen-Ahmadi N., Müller H.S.P., Naumenko O.V., Nikitin A.V., Polyansky O.L., Rey M., Rotger M., Sharpe S.W., Sung K., Starikova E., Tashkun S.A., Vander Auwera J., Wagner G., Wilzewski J., Wcisło P., Yu S., Zak E.J. The HITRAN 2016 molecular spectroscopic database // J. Quant. Spectrosc. Radiat. Transfer. 2017. V. 203. P. 3–69.
  38. Jacquinet-Husson N., Armante R., Scott N.A., Chédin A., Crépeau L., Boutammine C., Bouhdaoui A., Crevoisier C., Capelle V., Boonne C., Poulet-Crovisier N., Barbe A., Chris Benner D., Boudon V., Brown L.R., Buldyreva J., Campargue A., Coudert L.H., Devi V.M., Down M.J., Drouin B.J., Fayt A., Fittschen C., Flaud J.-M, Gamache R.R., Harrison J. J., Hill C., Hodnebrog O., Hu S.-M., Jacquemart D., Jolly A., Jiménez E., Lavrentieva N.N., Liu A.-W., Lodi L., Lyulin O.M., Massie S.T., Mikhailenko S., Müller H.S.P., Naumenko O.V., Nikitin A., Nielsen C.J., Orphal J., Perevalov V., Perrin A., Polovtseva E., Predoi-Cross A., Rotger M., Ruth A.A., Yu S.S, Sung K., Tashkun S.A., Tennyson J., Tyuterev Vl.G., Vander Auwera J., Voronin B.A., Makie A. The 2015 edition of the GEISA spectroscopic database // J. Mol. Spectrosc. 2016. V. 327. P. 31–72.
  39. Rothman L.S., Gordon I.E., Barber R.J., Dothe H., Gamache R.R., Goldman A., Perevalov V.I., Tashkun S.A., Tennyson J. HITEMP, the high-temperature molecular spectroscopic database // J. Quant. Spectrosc. Radiat. Transfer. 2010. V. 111, N 15. P. 2139–2150.
  40. Hargreaves R.J., Gordon I.E., Rothman L.S., Tashkun S.A., Perevalov V.I., Lukashevskaya A.A., Yuchenko S.N., Tennyson J., Holger S., Muller P. Spectroscopic line parameters of NO, NO2, and N2O for the HITEMP database // J. Quant. Spectrosc. Radiat. Transfer. 2019. V. 232. P. 35–53.
  41. Rey M., Nikitin A.V., Tyuterev V.G. Complete nuclear motion Hamiltonian in the irreducible normal mode tensor operator formalism for the methane molecule // J. Chem. Phys. 2012. V. 136, N 24. P. 244106.
  42. Nikitin A.V., Rey M., Tyuterev V.G. An efficient method for energy levels calculation using full symmetry and exact kinetic energy operator: Tetrahedral molecules // J. Chem. Phys. 2015. V. 142, N 9. P. 094118.
  43. Nikitin A.V., Rey M., Tyuterev V.G. New dipole moment surfaces of methane // Chem. Phys. Lett. 2013. V. 565, N 5. P. 5–11.
  44. Rey M., Nikitin A.V., Tyuterev V.G. Theoretical hot methane line list up to T = 2000 K for astrophysical applications // The Astrophys. J. 2014. V. 788. P. 1–10.
  45. Rey M., Nikitin A.V., Tyuterev V.G. Ab initio ro-vibrational Hamiltonian in irreducible tensor formalism: A method for computing energy levels from potential energy surfaces for symmetric-top molecules // Mol. Phys. 2010. V. 108. P. 2121–2135.
  46. Nikitin A.V., Rey M., Tyuterev V.G. High order dipole moment surfaces of PH3 and ab initio intensity predictions in the Octad range // J. Mol. Spectrosc. 2014. V. 305. P. 40–47.
  47. Delahaye T., Nikitin A., Rey M., Szalay P., Tyuterev V.G. A new accurate ground-state potential energy surface of ethylene and predictions for rotational and vibrational energy levels // J. Chem. Phys. 2014. V. 141. P. 104301.
  48. Nikitin A.V., Rey M., Rodina A.A., Krishna B.M., Tyuterev V.G. Full-dimensional potential energy and dipole moment surfaces of GeH4 molecule and accurate first-principle rotationally resolved intensity predictions in the infrared // J. Phys. Chem. A. 2016. V. 120. P. 8983–8997.
  49. Nikitin A.V., Rey M., Tyuterev V.G. Rotational and vibrational energy levels of methyl fluoride calculated from a new potential energy surface // J. Mol. Spectrosc. 2012. V. 274. P. 28–34.
  50. Rey M., Chizhmakova I.S., Nikitin A.V., Tyuterev V.G. Understanding global infrared opacity and hot bands of greenhouse molecules with low vibrational modes from first-principles calculations: the case of CF4 // Phys. Chem. Chem. Phys. 2018. V. 20. P. 21008–21033.
  51. Nikitin A.V., Rey M., Tyuterev V.G. First fully ab initio potential energy surface of methane with a spectroscopic accuracy // J. Chem. Phys. 2016. V. 145. P. 114309.
  52. Tyuterev V.G., Tashkun S.A., Rey M., Kochanov R.V., Nikitin A.V., Delahaye T. Accurate spectroscopic models for methane polyads derived from a potential energy surface using high-order contact transformations // J. Phys. Chem. A. 2013. V. 117. P. 13779–13805.
  53. Nikitin A.V., Chizhmakova I.S., Rey M., Tashkun S.A., Kassi S., Mondelain D., Campargue A., Tyuterev V.G. Analysis of the absorption spectrum of 12CH4 in the region 5855–6250 cm-1 of the 2n3 band // J. Quant. Spectrosc. Radiat. Transfer. 2017. V. 203. P. 341–348.
  54. Starikova E., Nikitin A.V., Rey M., Tashkun S.A., Mondelain D., Kassi S., Campargue A., Tyuterev V. Assignment and modeling of the absorption spectrum of 13CH4 at 80 K in the region of the 2n3 band (5853–6201 cm-1) // J. Quant. Spectrosc. Radiat. Transfer. 2016. V. 177. P. 170–180.
  55. Nikitin A.V., Thomas X., Daumont L., Rey M., Sung K., Toon G.C., Smith M.A.H., Mantz A.W., Tashkun S.A., Tyuterev V.G. Measurements and modeling of long-path 12CH4 spectra in the 5300–5550 cm-1 region // J. Quant. Spectrosc. Radiat. Transfer. 2017. V. 202. P. 255–264.
  56. Nikitin A.V., Ivanova Y.A., Rey M., Tashkun S.A., Toon G.C., Sung, K., Tyuterev Vl.G. Analysis of PH3 spectra in the Octad range 2733–3660 cm-1 // J. Quant. Spectrosc. Radiat. Transf. 2017. V. 203. P. 472–479.
  57. Rey M., Nikitin A.V., Babikov Y., Tyuterev V.G. TheoReTS – An information system for theoretical spectra based on variational predictions from molecular potential energy and dipole moment surfaces // J. Mol. Spectrosc. 2016. V. 327. P. 138–158.
  58. Mikhajlenko S.N., Babikov Yu.L., Golovko V.F. Informatsionno-vychislitel'naya sistema «Spektroskopiya atmosfernyh gazov». Struktura i osnovnye funktsii // Optika atmosf. i okeana. 2005. V. 18, N 9. P. 765–776.
  59. Babikov Yu.L., Mikhailenko S.N., Barbe A., Tyuterev Vl.G. S&MPO – an information system for ozone spectroscopy on the WEB // J. Quant. Spectrosc. Radiat. Transfer. 2014. V. 145. P. 169–196.
  60. Tashkun S.A., Tyuterev V.G. GIP: A program for experimental data reduction in molecular spectroscopy // Proc. SPIE. 1994. V. 2205. P. 188–191.
  61. Kochanov R.V., Perevalov V.I., Tashkun S.A. Integratsiya parametrov spektral'nyh linij molekuly CO2, soderzhashchihsya v bankah dannyh CDSD, v virtual'nyj tsentr atomnyh i molekulyarnyh dannyh (VAMDC) // Optika atmosf. i okeana. 2014. V. 27, N 3. P. 240–245.
  62. Dubernet M.L., Antony B.K., Ba Y.A., Babikov Yu.L., Bartschat K., Boudon V., Braams B.J., Chung H.-.K, Daniel F., Delahaye F., Del Zanna G., de Urquijo J., Dimitrijević M.S., Domaracka A., Doronin M., Drouin B.J., Endres C.P., Fazliev A.Z., Gagarin S.V., Gordon I.E., Gratier P., Heiter U., Hill C., Jevremović D., Joblin C., Kasprzak A., Krishnakumar E., Leto G., Loboda P.A., Louge T., Maclot S., Marinković B.P., Markwick A., Marquart T., Mason H.E., Mason N.J., Mendoza C., Mihajlov A.A., Millar T.J., Moreau N., Mulas G., Pakhomov Yu., Palmeri P., Pancheshnyi S., Perevalov V.I., Piskunov N., Postler J., Quinet P., Quintas-Sánchez E., Ralchenko Yu., Rhee Y.-J., Rixon G., Rothman L.S., Roueff E., Ryabchikova T., Sahal-Bréchot S., Scheier P., Schlemmer S., Schmitt B., Stempels E., Tashkun S., Tennyson J., Tyuterev Vl.G., Vujčić V, Wakelam V., Walton N.A., Zatsarinny O., Zeippen C.J., Zwölf C.M. The virtual atomic and molecular data centre (VAMDC) consortium // J. Phys. B: Atmos. Mol. Opt. Phys. 2016. V. 49. P. 074003.
  63. Voigt W. Über das gesetz intensitätsverteilung innerhalb der linien eines gasspektrams. München, Berlin: Sitzber. Bayr Akad., 1912. 603 p.
  64. Bykov A.D., Lavrent'eva N.N., Sinitsa L.N. Raschet koeffitsientov ushireniya i sdviga spektral'nyh linij uglekislogo gaza dlya vysokotemperaturnyh baz dannyh // Optika atmosf. i okeana. 2000. V. 13, N 12. P. 1098–1102.
  65. Dudaryonok A.S., Lavrent'eva N.N., Ma K. Metod srednih chastot dlya rascheta polushirin linij molekul tipa asimmetrichnogo volchka // Optika atmosf. i okeana. 2015. V. 28, N 8. P. 675–681.
  66. Brown L.R., Plymate C. H2-broadened H216O in four infrared bands between 55 and 4045 cm-1 // J. Quant. Spectrosc. Radiat. Transfer. 1996. V. 56, iss. 2. P. 263–282.
  67. Cherkasov M.R. K ushireniyu davleniem perekryvayushchihsya spektral'nyh linij // Optika i spektroskopiya. 1976. V. 40, N 1. P. 7–13.
  68. Cherkasov M.R. Stolknovitel'naya interferentsiya kolebatel'nyh polos v molekulyarnyh spektrah // Optika atmosf. i okeana. 2000. V. 13, N 4. P. 329–337.
  69. Dicke R.H. The effect of collisions upon the Doppler width of spectral lines // Phys. Rev. 1953. V. 89. P. 472–473.
  70. Nelkin M., Ghatak A. Simple binary collision model for Van Hove's Gs(rt) // Phys. Rev. 1964. V. 135. P. A4−A9.
  71. Rautian S.G., Sobel'man I.I. Vliyanie stolknovenij na doplerovskoe ushirenie spektral'nyh linij // Uspehi fiz. nauk. 1966. V. 90, N 2. P. 209−236.
  72. Galatry L. Simultaneous effect of Doppler and foreign gas broadening on spectral lines // Phys. Rev. 1961. V. 122. P. 1218–1223.
  73. Podgoretskij M.I., Stepanov A.V. K voprosu o dopplerovskoj shirine linij ispuskaniya i pogloshcheniya // ZH. eksperim. i teor. fiz. 1961. V. 40, N 2. P. 561–566.
  74. Rautian S.G. Diffuzionnoe priblizhenie v zadache o migratsii chastits v gaze // Uspehi fiz. nauk. 1991. V. 161, N 11. P. 151–170.
  75. Kochanov V.P. Sravnenie konturov spektral'nyh linij v modelyah sil'nyh i slabyh stolknovenij // Optika atmosf. i okeana. 2019. V. 32, N 2. P. 87–95.
  76. Kochanov V.P. Line profiles for the description of line mixing, narrowing, and dependence of relaxation constants on speed // J. Quant. Spectrosc. Radiat. Transfer. 2011. V. 112. P. 1931–1941.
  77. Kochanov V.P. Collision line narrowing and mixing of multiplet spectra // J. Quant. Spectrosc. Radiat. Transfer. 2000. V. 66. P. 313–325.
  78. Kochanov V.P. Vliyanie difraktsii molekul na stolknovitel'noe suzhenie linij // Optika i spektroskopiya. 2000. V. 89, N 5. P. 743–748.
  79. Kochanov V.P. Proyavleniya rasseyaniya molekul na malye ugly v konture spektral'nyh linij // Zhurn. eksperim. i teor. fiz. 2014. V. 145, N 3. P. 387–404.
  80. Kochanov V.P. Combined effect of small- and large-angle scattering collisions on a spectral line shape // J. Quant. Spectrosc. Radiat. Transfer. 2015. V. 159. P. 32–38.
  81. Kochanov V.P. Speed-dependent spectral line profile including line narrowing and mixing // J. Quant. Spectrosc. Radiat. Transfer. 2016. V. 177. P. 261–268.
  82. Kochanov V.P. On parameterization of spectral line profiles including the speed-dependence in the case of gas mixture // J. Quant. Spectrosc. Radiat. Transfer. 2017. V. 189. P. 18–23.
  83. Rothman L.S., Gordon I.E., Barbe A., Benner D.C., Bernath P.F., Birk M., Boudon V., Brown L.R., Cam-pargue A., Champion J.-P., Chance K., Coudert L.H., Dana V., Devi V.M., Fally S., Flaud J.-M., Gamache R.R., Goldman A., Jacquemart D., Kleiner I., Lacome N., Lafferty W.J., Mandin J.-Y., Massie S.T., Mikhailenko S.N., Miller C.E., Moazzen-Ahmadi N., Naumenko O., Nikitin A.V., Orphal J., Perevalov V.I., Perrin A., Predoi-Cross A., Rinsland C.P., Rotger M., Simecková M., Smith M.A.H., Sung K., Tashkun S.A., Tennyson J., Toth R.A., Vandaele A.C., Vander Auwera J. The HITRAN 2008 molecular spectroscopic database // J. Quant. Spectrosc. Radiat. Transfer. 2009. V. 110, N 9–10. P. 533–572.
  84. Serdyukov V.I., Sinitsa L.N., Vasil΄chenko S.S., Voronin B.A. High-sensitive Fourier-transform spectroscopy with short-base multipass absorption cells // Atmos. Ocean. Opt. 2013. V. 29. P. 329–36.
  85. Serdyukov V.I., Sinitsa L.N., Vasil’chenko S.S. Highly sensitive Fourier transform spectroscopy with led sources // J. Mol. Spectrosc. 2013. V. 290. P. 13–17.
  86. Serdyukov V.I., Sinitsa L.N. New features of an FT-spectrometer using LED sources// J. Quant. Spectrosc. Radiat. Transfer. 2016. V. 177. P. 248–252.
  87. Sinitsa L.N., Serdyukov V.I., Vasil'chenko S.S., Bykov A.D., Shcherbakov A.P., Polovtseva E.R., Kalinin K.V. Fur'e-spektr pogloshcheniya Н216О v oblasti 15500–16000 cm-1 // Optika i spektroskopiya. 2015. V. 118, N 5. P. 729–734.
  88. Sinitsa L.N., Serdyukov V.I., Polovtseva E.R., Bykov A.D., Shcherbakov A.P. Issledovaniya spektra pogloshcheniya vodyanogo para v vidimoj oblasti ot 19480 do 20500 cm-1 // Optika atmosf. i okeana. 2018. V. 31, N 4. P. 247–252.
  89. Mikhailenko S.N., Serdyukov V.I., Sinitsa L.N. LED-based Fourier transform spectroscopy of H2O18 in the 15 000–16 000 cm-1 range // J. Quant. Spectrosc. Radiat. Transfer. 2015. V. 156. P. 36–46.
  90. Mikhailenko S.N., Serdyukov V.I., Sinitsa L.N., Vasil'chenko S.S. Svetodiodnaya Fur'e-spektroskopiya H218O v diapazone 15000–15700 cm-1 // Optika i spektroskopiya. 2013. V. 115, N 6. P. 912–921.
  91. Mikhailenko S.N., Serdyukov V.I., Sinitsa L.N. Study of H216O and H218O absorption in the 16.460–17.200 cm-1 range using LED-based Fourier transform spectroscopy // J. Quant. Spectrosc. Radiat. Transfer. 2018. V. 217. P. 170–177.
  92. Serdyukov V.I., Sinitsa L.N. Spektr pogloshcheniya D2O v oblasti 0,97 mm: kolebatel'no-vrashchatel'naya polosa 3n1 + n3 // Optika i spektroskopiya. 2017. V. 123, N 2. P. 54–61.
  93. Serdukov V.I., Sinitsa L.N., Kruglova T.V., Polovtseva E.R., Bykov A.D., Shcherbakov A.P. D2O absorption spectrum in the region near 0.95 mm: The n1 + 3n3 rotational-vibrational band // Atmos. Ocean. Opt. 2017. V. 30, N 2. P. 129–133.
  94. Serdyukov V.I., Sinitsa L.N., Bykov A.D., Polovtseva E.R., Voronin B.A., Scherbakov A.P. Absorption spectrum of D2O between 10000–11000 cm-1 // J. Quant. Spectrosc. Radiat. Transfer. 2017. V. 203. P. 186-193.
  95. Vasilenko I.A., Naumenko O.V., Serdyukov V.I., Sinitsa L.N. LED based Fourier transform absorption spectroscopy of D216O in 14800–15200 cm-1 spectral region // J. Quant. Spectrosc. Radiat. Transfer. 2017. V. 202. P. 321–327.
  96. Serdyukov V.I., Sinitsa L.N., Polovtseva E.R., Bykov A.D., Voronin B.A., Scherbakov A.P. Study of HDO absorption in the 11.200–12.400 cm-1 range using LED-based Fourier transform spectroscopy // J. Quant. Spectrosc. Radiat. Transfer. 2017. V. 202. P. 187–192.
  97. Vasilenko I.A., Serdyukov V.I., Sinitsa L.N. Study of the HD16O absorption in the 14,800–15,500 cm-1 range using LED-based Fourier transform spectroscopy // J. Quant. Spectrosc. Radiat. Transfer. 2019 (в печати).
  98. Serdyukov V.I., Sinitsa L.N., Lugovskoi A.A., Borkov Yu.G., Tashkun S.A., Perevalov V.I. LED-based Fourier transform spectroscopy of 16O12C18O and 12C18O2 in the 11260–11430 cm-1 range // J. Quant. Spectrosc. Radiat. Transfer. 2016. V. 177. P. 145–151.
  99. Serdyukov V.I., Sinitsa L.N., Vasilchenko S.S., Lavrentieva N.N., Dudaryonok A.S., Scherbakov A.P. Study of Н2О line broadening and shifting by N2 pressure in the 16.600–17.060 cm-1 region using FT-spectrometer with LED source // J. Quant. Spectrosc. Radiat. Transfer. 2018. V. 219. P. 213–223.
  100. Serdyukov V.I., Sinitsa L.N., Lavrentieva N.N., Dudaryonok A.S. Measurements of N2-broadening and shifting parameters of the water vapour spectral lines in the 19.500–19.970 cm-1 region using FT-spectrometer with LED source // J. Quant. Spectrosc. Radiat. Transfer. 2019 (в печати).
  101. Petrova T.M., Ponomarev Yu.N., Solodov A.A., Solodov A.M., Boldyrev N.Yu. Spektrometricheskij kompleks dlya issledovaniya spektrov selektivnogo i neselektivnogo pogloshcheniya gazov v shirokom spektral'nom diapazone // Optika atmosf. i okeana. 2015. V. 28, N 5. P. 430–435.
  102. Petrova T.M., Solodov A.M., Solodov A.A., Lyulin O.M., Tashkun S.A., Perevalov V.I. Measurements of 12C16O2 line parameters in the 8790–8860, 9340–9650, and 11.430–11.505 cm-1 wavenumber regions by means of Fourier transform spectroscopy // J. Quant. Spectrosc. Radiat. Transfer. 2013. V. 124. P. 21–27.
  103. Lorono Gonzalez M.A., Boudon V., Loete M., Rotger M., Bourgeois M.-T., Didriche K., Herman M., Kapitanov V.A., Ponomarev Yu.N., Solodov A.A., Solodov A.M., Petrova T.M. High-resolution spectroscopy and preliminary global analysis of C–H stretching vibrations of C2H4 in the 3000 and 6000 cm-1 regions // J. Quant. Spectrosc. Radiat. Transfer. 2010. V. 111, iss. 15. P. 2265–2278.
  104. Solodov A.A., Chesnokova T.Yu., Ponomarev Yu.N., Solodov A.M., Chentsov A.V. Measurement of SO2 absorption spectra in the UV spectral region // Proc. SPIE. 2014. V. 9292. P. 929208-1–6.
  105. Solodov A.M., Solodov A.A., Dejchuli V.M., Kuryak A.N., Osipov K.Yu., Petrova T.M., Ponomarev Yu.N., Ptashnik I.V. Modernizatsiya kompleksa na osnove Fur'e-spektrometra i 30-metrovoj opticheskoj kyuvety dlya izmereniya slabogo selektivnogo i neselektivnogo pogloshchenij // Optika atmosf. i okeana. 2017. V. 30, N 5. P. 431–434.
  106. Ponomarev Yu.N., Tyryshkin I.S. Uvelichenie chuvstvitel'nosti i otnosheniya signal-shum v lazernom spektrofotometre s 30-metrovoj pogloshchayushchej kyuvetoj // Optika atmosf. i okeana. 2003. V. 16, N 11. P. 1021–1024.
  107. Wang L., Perevalov V.I., Tashkun S.A., Liu A.W., Hu S.M. Absorption spectra of 12C16O2 and 13C16O2 near 1.05 mm // J. Mol. Spectrosc. 2005. V. 233, iss. 2. P. 297–300.
  108. Ma Q., Tipping R.H., Leforestier C. Temperature dependences of mechanisms responsible for the water-vapor continuum absorption: 1. Far wings of allowed lines // J. Chem. Phys. 2008. V. 128. P. 124313 (1–17).
  109. Nesmelova L.I., Rodimova O.B., Tvorogov S.D. Kontur spektral'noj linii i mezhmolekulyarnoe vzaimodejstvie. Novosibirsk: Nauka. 1986. 216 p.
  110. Scribano Y., Leforestier C. Contribution of water dimers absorption to the millimeter and far infrared atmospheric water continuum // J. Chem. Phys. 2007. V. 126. P. 234301 (1-12).
  111. Kjaergaard H.G., Garden A.L., Chaban G.M. et al. Calculation of vibrational transition frequencies and intensities in water dimer: Comparison of different vibrational approaches // J. Phys. Chem. A. 2008. V. 112. P. 4324–4335.
  112. Ptashnik I.V., Smith K.M., Shine K.P., Newnham D.A. Laboratory measurements of water vapour continuum absorption in spectral region 5000–5600 cm-1: Evidence for water dimmers // Q. J. R. Meteorol. Soc. 2004. V. 130. P. 2391–2408.
  113. Paynter D.J., Ptashnik I.V., Shine K.P., Smith K.M. Pure water vapor continuum measurements between 3100 and 4400 cm-1: Evidence for water dimer absorption in near atmospheric conditions // Geophys. Res. Lett. 2007. V. 34. P. L12808 (1–5).
  114. Paynter D.J., Ptashnik I.V., Shine K.P., Smith K.M., McPheat R., Williams R.G. Laboratory measurements of the water vapor continuum in the 1200–8000 cm-1 region between 293 and 351 K // J. Geophys. Res. 2009. V. 114. P. D21301 (1–23).
  115. Bouteiller Y., Perchard J.P. The vibrational spectrum of (Н2O)2: Comparison between anharmonic ab initio calculations and neon matrix infrared data between 9000 and 90 cm-1 // J. Chem. Phys. 2004. V. 305, N 1–3. P. 1–12.
  116. Kuyanov-Prozument K., Choi M.Y., Vilesov A.F. Spectrum and infrared intensities of OH-stretching bands of water dimmers // J. Chem. Phys. 2010. V. 132. P. 014304 (1–7).
  117. Ptashnik I.V. Evidence for the contribution of water dimers to the near-IR water vapour self-continuum // J. Quant. Spectrosc. Radiat. Transfer. 2008. V. 109. P. 831–852.
  118. Ptashnik I.V., Shine K.P., Vigasin A.A. Water vapour self-continuum and water dimers: 1. Analysis of recent work // J. Quant. Spectrosc. Radiat. Transfer. 2011. V. 112. P. 1286–1303.
  119. Ptashnik I.V., Klimeshina T.E., Solodov A.A., Vigasin A.A. Spectral composition of the water vapour self-continuum absorption within 2.7 and 6.25 mm band // J. Quant. Spectrosc. Radiat. Transfer. 2019. V. 228, P. 97–105. DOI: 10.1016/j.jqsrt.2019.02.024.
  120. Vigasin A.A. Bound, metastable and free states of bimolecular complexes // Infrared Phys. 1991. V. 32. P. 461–470.
  121. Vigasin A.A. Bimolecular absorption in atmospheric gases / C. Camy-Peyret, A.A. Vigasin (eds.). Weakly interacting molecular pairs: unconventional absorbers of radiation in the atmosphere. Kluwer, Netherlands, 2003. P. 23–47.
  122. Ptashnik I.V., McPheat R.A., Shine K.P., Smith K.M., Williams R.G. Water vapor self-continuum absorption in near-infrared windows derived from laboratory measurements // J. Geophys. Res. 2011. V. 116. D16305 (1–16).
  123. Ptashnik I.V., McPheat R.A., Shine K.P., Smith K.M., Williams R.G. Water vapour foreign continuum absorption in near-infrared windows from laboratory measurements // Phil. Trans. Roy. Soc. A. 2012. V. 370. P. 2557–2577.
  124. Mlawer E.J., Payne V.H., Moncet J-L., Delamere J.S., Alvarado M.J., Tobin D.D. Development and recent evaluation of the MT_CKD model of continuum absorption // Phil. Trans. Roy. Soc. A. 2012. V. 370. Р. 2520–2556. DOI: 10.1098/rsta.2011.0295.
  125. Shine K.P., Ptashnik I.V., Rädel G. The water vapour continuum: Brief history and recent developments // Surv. Geophys. 2012. V. 33. Р. 535–555. DOI: 10.1007/s10712-011-9170-y.
  126. Ptashnik I.V. Kontinual'noe pogloshchenie vodyanogo para: kratkaya predistoriya i sovremennoe sostoyanie problemy // Optika atmosf. i okeana. 2015. V. 28, N 5. P. 443–459.
  127. Shine K.P., Campargue A., Mondelain D., McPheat R., Ptashnik I.V., Weidmann D. The water vapour continuum in near-infrared windows – current understanding and prospects for its inclusion in spectroscopic databases // J. Mol. Spectrosc. 2016. V. 327. P. 193–208. DOI: 10.1016/j.jms.2016.04.011.
  128. Serov E.A., Odintsova T.A., Tretyakov M.Y., Semenov V.E. On the origin of the water vapor continuum absorption within rotational and fundamental vibrational bands // J. Quant. Spectrosc. Radiat. Transfer. 2017. V. 193. P. 1–12. DOI: 10.1016/j.jqsrt.2017.02.011.

Back