Vol. 32, issue 09, article # 2

Banakh V.A. Lidar methods and means for the study atmospheric of turbulence developed at Institute of Atmospheric Optics SB RAS. // Optika Atmosfery i Okeana. 2019. V. 32. No. 09. P. [in Russian].
Copy the reference to clipboard
Abstract:

The main results Institute of Atmospheric Optics, Siberian Branch, Russian Academy of Sciences, on the research and development of lidar methods and means for the study of atmospheric turbulence performed at the last five years are received.

Keywords:

wind Doppler lidar, the lidar for measuring intensity of optical turbulence

Figures:
References:

  1. Henderson S.W., Suni P.J.M., Hale C.P., Hannon S.M., Magee J.R., Bruns D.L., Yuen E.H. Coherent laser radar at 2 mm using solid-state lasers // IEEE Trans. Geosci. Remote Sens. 1993. V. 31, N 1. P. 4–15.
  2. Cariou J.-P., Thobois L., Spenser P. From Windcube #0001 to Windbube#1000: Doppler lidar as a mature technology // 19 Coherent Laser Radar Conf. 18–21 June 2018, Okinawa, Japan. P. 404–407.
  3. Andreev M., Vasil'ev D., Penkin M., Smolentsev S., Borejsho A., Klochkov D., Konyaev M., Orlov A., Chugreev A. Kogerentnye dopplerovskie lidary dlya monitoringa vetrovoj obstanovki // Fotonika. 2014. N 6/48. P. 20–28.
  4. Hogan R.J., Grant A.L.M., Illingworth A.J., Pearson G.N., O’Connor E.J. Vertical velocity variance and skewness in clear and cloud-topped boundary layers as revealed by Doppler lidar // Q. J. Roy. Meteorol. Soc. 2009. V. 135, N 4. P. 635–643.
  5. Barlow J.F., Dunbar T.M., Nemitz E.G., Wood C.R., Gallagher M.W., Davies F., O’Connor E., Harrison R.M. Boundary layer dynamics over London, UK, as observed using Doppler lidar during REPARTEE-II // Atmos. Chem. Phys. 2011. V. 11, N 3. P. 2111–2125.
  6. Huang M., Gao Z., Miao S., Chen F., Lemone M.A., Li J., Hu F., Wang L. Estimate of boundary-layer depth over Beijing, China, using Doppler lidar data during SURF-2015 // Bound.-Lay. Meteorol. 2017. V. 162, N 9. P. 503–522.
  7. Pichugina Y.L., Banta R.M. Stable boundary layer depth from high-resolution measurements of the mean wind profile // J. Appl. Meteorol. Climatol. 2010. V. 49, N 1. P. 20–35.
  8. Bonin T.A., Carroll B.J., Hardesty R.M., Brewer W.A., Hajny K., Salmon O.E., Shepson P.B. Doppler lidar observation of the mixing height in Indianapolis using an automated composite fuzzy logic approach // J. Atmos. Ocean. Technol. 2018. V. 35, N 3. P. 915–935.
  9. Banakh V.A., Smalikho I.N. Coherent Doppler wind lidars in a turbulent atmosphere. Boston, London: Artech House, 2013. 248 p.
  10. Sathe A., Mann J. A review of turbulence measurements using ground-based wind lidars // Atmos. Meas. Tech. 2013. V. 6. P. 3147–3167.
  11. Fuertes F.C., Iungo G.V., Porté-Agel F. 3D turbulence measurements using three synchronous wind lidars: Validation against sonic anemometry // J. Atmos. Ocean. Technol. 2014. V. 31. P. 1549–1556.
  12. Sathe A., Mann J., Vasiljevic N., Lea G. A six-beam method to measure turbulence statistics using ground-based wind lidars // Atmos. Meas. Tech. 2015. V. 8. P. 729–740.
  13. Smalikho I.N., Banakh V.A. Measurements of wind turbulence parameters by a conically scanning coherent Doppler lidar in the atmospheric boundary layer // Atmos. Meas. Tech. 2017. V. 10. P. 4191–4208.
  14. Banakh V.A., Smalikho I.N., Falits A.V. Estimation of the turbulence energy dissipation rate in the atmospheric boundary layer from measurements of the radial wind velocity by micropulse coherent Doppler lidar // Opt. Express. 2017. V. 25, N 19. P. 22679–22692.
  15. Bonin T.A., Choukulkar A., Brewer W.A., Sand­berg S.P., Weickmann A.M., Pichugina Y., Banta R.M., Oncley S.P., Wolfe D.E. Evaluation of Turbulence Measurement Techniques from a Single Doppler Lidar // Atmos. Meas. Tech. 2017. V. 10. P. 3021–3039.
  16. Newman J.F., Clifton A. An error reduction algorithm to improve lidar turbulence estimates for wind energy // Wind Energ. Sci. 2017. V. 2. P. 77–95.
  17. Banakh V.A., Smalikho I.N. Lidar studies of wind turbulence in the stable atmospheric boundary layer // Remote Sens. 2018. V. 10. P. 1219.
  18. Bodini N., Lundquist J.K., Newsom R.K. Estimation of turbulence dissipation rate and its variability from sonic anemometer and wind Doppler lidar during the XPIA field campaign // Atmos. Meas. Tech. 2018. V. 11. P. 4291–4308.
  19. Smaliho I.N., Banah V.A. Tochnost' otsenivaniya skorosti dissipatsii energii turbulentnosti iz izmerenij vetra impul'snym kogerentnym doplerovskim lidarom pri konicheskom skanirovanii zondiruyushchim puchkom. Part I. Algoritm obrabotki lidarnyh dannyh // Optika atmosf. i okeana. 2013. V. 26, N 3. P. 213–219; Smalikho I.N., Banakh V.A. Accuracy of estimation of the turbulent energy dissipation rate from wind measurements with a conically scanning pulsed coherent doppler lidar. Part I. Algorithm of data processing // Atmos. Ocean. Opt. 2013. V. 26, N 5. P. 404–410.
  20. Smaliho I.N., Banah V.A., Falits A.V., Rudi Yu.A. Opredelenie skorosti dissipatsii energii turbulentnosti iz dannyh, izmerennyh lidarom Stream Line v prizemnom sloe atmosfery // Optika atmosf. i okeana. 2015. V. 28, N 10. P. 901–905.
  21. Banah V.A., Smaliho I.N. Izmerenie vetra v pogranichnom sloe atmosfery mikroimpul'snymi kogerentnymi doplerovskimi lidarami // Optika i spektroskop. 2016. V. 121, N 1. P. 164–171.
  22. Smaliho I.N., Banah V.A., Falits A.V. Lidarnye izmereniya parametrov vetrovoj turbulentnosti v pogranichnom sloe atmosfery // Optika atmosf. i okeana. 2017. V. 30, N 4. P. 342–349.
  23. Smaliho I.N., Banah V.A., Falits A.V. Lidarnye issledovaniya vetrovoj turbulentnosti pri nalichii v atmosfere nizkourovnevogo strujnogo techeniya // Optika atmosf. i okeana. 2018. V. 31, N 9. P. 716–724.
  24. Stephan A., Wildmann N., Smaliho I.N. Izmereniya parametrov vetrovoj turbulentnosti lidarom Windcube 200s v pogranichnom sloe atmosfery // Optika atmosf. i okeana. 2018. V. 31, N 10. P. 815–820.
  25. Banah V.A., Nadeev A.I., Razenkov I.A., Smaliho I.N., Falits A.V., Sherstobitov A.M. Rezul'taty testirovaniya impul'snogo kogerentnogo doplerovskogo lidara, sozdannogo v IOA SO RAN // XXV Mezhdunar. simpoz. «Optika atmosfery i okeana. Fizika atmosfery». Novosibirsk, 2019 year. (in print).
  26. Belen'kij M.S., Boronoev V.V., Gomboev N.Ts., Mironov V.L. Opticheskoe zondirovanie atmosfernoj turbulentnosti. Novosibirsk: Nauka, 1986. 92 p.
  27. Zilbermen A., Kopeika N.S. Lidar measurements of atmospheric turbulence profiles // Proc. SPIE XVI Free Space Laser Commun. Technol. Bellingham. 2004. V. 5338. P. 288–297.
  28. Gurvich A.S. Lidarnoe zondirovanie turbulentnosti na osnove effekta usileniya obratnogo rasseyaniya // Izv. RAN. Fizika atmosf. i okeana. 2012. V. 48, N 6. P. 655–665.
  29. Lidar: Pat. 116245. Russia, MPK8, G 01 S 17/88. Gurvich A.S.; Uchrezhdenie RAN Institut fiziki atmosfery im. A.M.  Obuhova RAN. N 2011150933/28; Zayavl. 15.12.2011; Opubl. 20.05.2012. Byul. N 14.
  30. Vinogradov A.G., Kravtsov Yu.A., Tatarskij V.I. Effekt usileniya obratnogo rasseyaniya na telah, pomeshchennyh v sredu so sluchajnymi neodnorodnostyami // Izv. vuzov. Radiofizika. 1973. V. 16, N 7. P. 1064–1070.
  31. Banakh V.A., Razenkov I.A., Smalikho I.N. Laser echo signal amplification in a turbulent atmosphere // Appl. Opt. 2015. V. 54, N 24. P. 7301–7307.
  32. Banah V.A., Razenkov I.A., Smaliho I.N. Aerozol'nyj lidar dlya issledovaniya usileniya obratnogo atmosfernogo rasseyaniya. I. Komp'yuternoe modelirovanie // Optika atmosf. i okeana. 2015. V. 28, N 1. P. 5–11.
  33. Banah V.A., Razenkov I.A. Aerozol'nyj lidar dlya issledovaniya usileniya obratnogo atmosfernogo rasseyaniya. II. Konstruktsiya i eksperiment // Optika atmosf. i okeana. 2015. V. 28, N 02. P. 113–119.
  34. Vrancken P., Wirth M., Ehret G., Barny H., Rondeau P., Veerman H. Airborne forward-pointing UV Rayleigh lidar for remote clear air turbulence detection: system design and performance // Appl. Opt. 2016. V. 55, N 32. P. 9314–9328.
  35. Hauchecorne A., Cot Ch., Dalaudier F., Porteneuve J., Gaudo T., Wilson R., Cénac C., Laqui Ch., Keckhut P., Perrin J.-M., Dolfi A., Cézard N., Lombard L., Besson C. Tentative detection of clear-air turbulence using a ground-based Rayleigh lidar // Appl. Opt. 2016. V. 55, N 13. P. 3420–3428.
  36. Kolmogorov A.N. Lokal'naya struktura turbulentnosti v neszhimaemoj vyazkoj zhidkosti pri ochen' bol'shih chislah Rejnol'dsa // Dokl. AN SSSR. 1941. V. 30, N 4. P. 299–303.
  37.  Monin A.S., Yaglom A.M. Statisticheskaya gidromehanika. Part 2. M.: Nauka, 1967. 720 p.
  38. Byzova N.L., Ivanov V.N., Garger E.K. Turbulentnost' v pogranichnom sloe atmosfery. L.: Gidrometeoizdat, 1989. 263 p.
  39. Lamli Dzh., Panovskij G. Struktura atmosfernoj turbulentnosti. M.: Mir, 1966. 264 p.
  40. Banta R.M., Newsom R.K., Lundquist J.K., Pichugi­na Y.L., Coulter R.L., Mahrt L. Nocturnal low-level jet characteristics over Kansas during CASES-99 // Bound.-Lay. Meteorol. 2002. V. 105. P. 221–252.
  41. Banta R.M., Pichugina Y.L., Brewer W.A. Turbulent velocity-variance profiles in the stable boundary layer generated by a nocturnal low-level jet // J. Atmos. Sci. 2006. V. 63 P. 2700–2719.
  42. Banta R.M., Pichugina Y.L., Newsom R.K. Relation­ship between low-level jet properties and turbulence kinetic energy in the nocturnal stable boundary layer // J. Atmos. Sci. 2003. V. 60 P. 2549–2555.
  43. Newsom R.K., Banta R.M. Shear-flow instability in the stable nocturnal boundary layer as observed by Doppler lidar during CASES-99 // J. Atmos. Sci. 2003. V. 60, N 1. P. 16–33.
  44. Pichugina Y.L., Banta R.M., Kelley N.D., Brewer W.A. Nocturnal boundary layer height estimate from Doppler lidar measurements // Proc. 18th Symp. on Bound.-Lay. and Turbulence. Stockholm, Sweden, June 2008. 7B.6.
  45. Eberhard W.L., Cupp R.E., Healy K.R. Doppler lidar measurement of profiles of turbulence and momentum flux // J. Atmos. Ocean. Technol. 1989. V. 6. P. 809–819.
  46. von Kàrmàn T. Progress in the statistical theory of turbulence // Proc. Nat. Acad. Sci. 1948. V. 34, N 11. P. 530–539.
  47. Vinnichenko N.K., Pinus N.Z., Shmeter S.M., Shur G.N. Turbulentnost' v svobodnoj atmosfere. L.: Gidrometeoizdat, 1976, 336 p.
  48. Banah V.A., Smaliho I.N. Otsenivanie skorosti dissipatsii turbulentnoj energii v pogranichnom sloe atmosfery iz izmerenij radial'noj skorosti vetra mikroimpul'snymi kogerentnymi doplerovskimi lidarami. Part I. Chislennyj analiz // Optika atmosf. i okeana. 2017. V. 30, N 8. P. 631–637.
  49. Banah V.A., Smaliho I.N., Falits A.V. Otsenivanie skorosti dissipatsii turbulentnoj energii v pogranichnom sloe atmosfery iz izmerenij radial'noj skorosti vetra mikroimpul'snymi kogerentnymi doplerovskimi lidarami. Part II. Eksperiment // Optika atmosf. i okeana. 2017. V. 30, N 8. P. 638–643.
  50. Banakh V.A., Smalikho I.N. Lidar observations of atmospheric internal waves in the boundary layer of atmosphere on the coast of Lake Baikal // Atmos. Meas. Tech. 2016. V. 9, N 10. P. 5239–5248.
  51. Pearson G.N., Facock J., Olsson F. A 1.5 mkm coherent pulsed Doppler lidar using fibre-optics components // Proc. 11th Coherent Laser Radar Conf. 1–6th July 2001. Malvern, Worcestershire. P. 144–146.
  52. Pierson G., Davies F., Collier C. An analysis of performance of the UFAM Pulsed Doppler lidar for the observing the boundary layer // J. Atmos. Ocean. Tech. 2009. V. 26, N 2. P. 240–250.
  53. Banakh V.A., Razenkov I.A. Refractive turbulence strength estimation based on the laser echo signal amplification effect // Opt. Lett. 2016. V. 41, N 19. P. 4429–4432.
  54. Banah V.A., Razenkov I.A. Lidarnye izmereniya usileniya obratnogo atmosfernogo rasseyaniya // Optika i spektroskop. 2016. V. 120, N 2. P. 339–348.
  55. Banah V.A., Mironov V.L. Lokatsionnoe rasprostranenie lazernogo izlucheniya v turbulentnoj atmosfere. Nauka, 1986. 173 p.
  56. Smaliho I.N. Raschet koeffitsienta usileniya obratnogo rasseyaniya lazernogo izlucheniya, rasprostranyayushchegosya v turbulentnoj atmosfere, s ispol'zovaniem chislennogo modelirovaniya // Optika atmosf. i okeana. 2012. V. 25, N 9. P. 796–800; Smalikho I.N. Calculation of the backscatter amplification coefficient of laser radiation propagating in a turbulent atmosphere using numerical simulation // Atmos. Ocean. Opt. 2013. V. 26, N 2. P. 135–139.
  57. Banah V.A. Usilenie srednej moshchnosti obratno rasseyannogo v atmosfere izlucheniya v rezhime sil'noj opticheskoj turbulentnosti // Optika atmosf. i okeana. 2012. V. 25, N 10. P. 857–862.
  58. Banah V.A., Falits A.V., Zaloznaya I.V. Vliyanie prostranstvennoj ogranichennosti lazernogo puchka na effekt usileniya obratnogo rasseyaniya v turbulentnoj atmosfere // XXV Mezhdunar. simpoz. «Optika atmosfery i okeana. Fizika atmosfery». Novosibirsk. 2019 year. (in print).
  59. Banah V.A., Gerasimova L.O., Zaloznaya I.V., Falits A.V. Usilenie lidarnogo signala v rezhime sil'noj opticheskoj turbulentnosti // Optika atmosf. i okeana. 2018. V. 31, N 8. P. 609–615; Banakh V.A., Gerasimova L.O., Zaloznaya I.V., Falits A.V. Lidar signal amplification in a turbulent atmosphere under strong optical scintillations // Atmos. Ocean. Opt. 2019. V. 32, N 1. P. 1–7.
  60. Banah V.A., Falits A.V. Chislennyj analiz proyavleniya effekta usileniya obratnogo rasseyaniya v zavisimosti ot intensivnosti opticheskoj turbulentnosti // XXV Mezhdunar. simpoz. « Optika atmosfery i okeana. Fizika atmosfery». Novosibirsk, 2019 year. (in print).

Back