Vol. 32, issue 08, article # 9

Zuev V.V., Saveljeva E.S. The influence of the stratospheric and tropospheric polar vortices on the Barents Sea ice extent during winter 1997/1998 and 2015/2016. // Optika Atmosfery i Okeana. 2019. V. 32. No. 08. P. 665–668 [in Russian].
Copy the reference to clipboard

A temperature decrease occurs inside the tropospheric polar vortex during winter, which is reflected in an increase in the Arctic sea ice extent. However, the Barents Sea often turns out to be at the tropospheric vortex edge in winter, where the surface temperature is higher, which leads to a decrease in sea ice extent. Based on the ERA-Interim reanalysis data and the NSIDC satellite data, we show that the Barents Sea ice extent depends on the shape and location of the tropospheric polar vortex from December to February. Based on the example of the polar vortex dynamics in 1997/1998 and 2015/2016 and using the correlation analysis, we show that the tropospheric polar vortex edge can repeat the shape and location of the stratospheric vortex from December to March. Thus, Arctic sea ice loss as a result of a change in the tropospheric vortex edge can occur under the influence of the stratospheric polar vortex in winter.


stratospheric and tropospheric polar vortices, the Barents Sea, Arctic sea ice extent, surface temperature


  1. Waugh D.W., Polvani L.M. Stratospheric polar vortices // The Stratosphere: Dynamics, Transport, and Chemistry. 2010. P. 43–57.
  2. Waugh D.W., Randel W.J. Climatology of Arctic and Antarctic polar vortices using elliptical diagnostics // J. Atmos. Sci. 1999. V. 56, N 11. P. 1594–1613.
  3. Waugh D.W., Sobel A.H., Polvani L.M. What is the polar vortex and how does it influence weather? // B. Am. Meteorol. Soc. 2017. V. 98, N 1. P. 37–44.
  4. Cellitti M.P., Walsh J.E., Rauber R.M., Portis D.H. Extreme cold air outbreaks over the United States, the polar vortex, and the large-scale circulation // J. Geophys. Res. D. 2006. V. 111, N 2. P. D02114.
  5. Li Zh., Manson A.H., Li Y., Meek C. Circulation characteristics of persistent cold spells in central-eastern North America // J. Meteorol. Res. 2017. V. 31, N 1. P. 250–260.
  6. McKenna C.M., Bracegirdle T.J., Shuckburgh E.F., Haynes P.H., Joshi M.M. Arctic sea ice loss in different regions leads to contrasting Northern Hemisphere impacts // Geophys. Res. Lett. 2017. V. 45, N 2. P. 945–954.
  7. Yang X.-Y., Yuan X., Ting M. Dynamical link between the Barents–Kara Sea ice and the Arctic Oscillation // J. Climate. 2016. V. 29, N 14. P. 5103–5122.
  8. Jaiser R., Dethloff K., Handorf D. Stratospheric response to Arctic sea ice retreat and associated planetary wave propagation changes // Tellus A. 2013. V. 65, N 1. P. 19375.
  9. Kim B.-M., Son S.-W., Min S.-K., Jeong J.-H., Kim S.-J., Zhang X., Shim T., Yoon J.-H. Weakening of the stratospheric polar vortex by Arctic sea-ice loss // Nat. Commun. 2014. V. 5. P. 4646.
  10. Overland J.E., Wang M. Recent extreme Arctic temperatures are due to a split polar vortex // J. Climate. 2016. V. 29, N 15. P. 5609–5616.
  11. Li F., Wang H., Gao Y. Extratropical ocean warming and winter Arctic sea ice cover since the 1990s // J. Climate. 2015. V. 28, N 14. P. 5510–5522.
  12. Sorteberg A., Kvingedal B. Atmospheric forcing on the Barents Sea winter ice extent // J. Climate. 2006. V. 19, N 19. P. 4772–4784.
  13. Cullather R.I., Lim Y.-K., Boisvert L.N., Brucker L., Lee J.N., Nowicki S.M.J. Analysis of the warmest Arctic winter, 2015–2016 // Geophys. Res. Lett. 2016. V. 43, N 20. P. 10808–10816.
  14. Black R.X. Stratospheric forcing of surface climate in the Arctic Oscillation // J. Climate. 2002. V. 15, N 3. P. 268–277.
  15. Dee D.P., Uppala S.M., Simmons A.J., Berrisford P., Poli P., Kobayashi S., Andrae U., Balmaseda M.A., Balsamo G., Bauer P., Bechtold P., Beljaars A.C.M., van de Berg L., Bidlot J., Bormann N., Delsol C., Dragani R., Fuentes M., Geer A.J., Haimberger L., Hea­ly S.B., Hersbach H., Hólm E.V., Isaksen L., Kållberg P., Köhler M., Matricardi M., McNally A.P., Monge-Sanz B.M., Morcrette J.-J., Park B.-K., Peubey C., de Rosnay P., Tavolato C., Thépaut J.-N., Vitart F. The ERA-Interim reanalysis: Configuration and performance of the data assimilation system // Q. J. R. Meteorol. Soc. 2011. V. 137, N. 656. P. 553–597.
  16. Fetterer F., Knowles K., Meier W., Savoie M., Wind­nagel A.K. Sea Ice Index, Version 3. 2017, updated daily. Boulder, Colorado USA. NSIDC: National Snow and Ice Data Center. [Electronic resource]. URL: https:// doi.org/10.7265/N5K072F8 (last access: 23.01.2019).
  17. Kuttippurath J., Nikulin G. A comparative study of the major sudden stratospheric warmings in the Arctic winters 2003/2004–2009/2010 // Atmos. Chem. Phys. 2012. V. 12, N 17. P. 8115–8129.
  18. Flury T., Hocke K., Haefele A., Kämpfer N., Lehmann R. Ozone depletion, water vapor increase, and PSC generation at midlatitudes by the 2008 major stratospheric warming // J. Geophys. Res. D. 2009. V. 114, N 18. P. D18302.
  19. Ageyeva V.Yu., Gruzdev A.N., Elokhov A.S., Mokhov I.I., Zueva N.E. Sudden stratospheric warmings: Statistical characteristics and influence on NO2 and O3 total contents // Izv. Atmos. Ocean. Phys. 2017. V. 53, N 5. P. 477–486.
  20. Limpasuvan V., Thompson D.W.J., Hartmann D.L. The life cycle of the Northern Hemisphere sudden stratospheric warmings // J. Climate. 2004. V. 17, N 13. P. 2584–2596.
  21. Makshtas A.P., Shoutilin S.V., Andreas E.L. Possible dynamic and thermal causes for the recent decrease in sea ice in the Arctic Basin // J. Geophys. Res. C. 2003. V. 108, N 7. P. 3232.
  22. Nakanowatari T., Sato K., Inoue J. Predictability of the Barents Sea ice in early winter: Remote effects of oceanic and atmospheric thermal conditions from the North Atlantic // J. Climate. 2014. V. 27, N 23. P. 8884–8901.