Vol. 32, issue 08, article # 6

Tarasenkov M.V., Zimovaya A.V., Belov V.V., Engel' M.V. Reconstruction of the Earth surface reflection coefficients from MODIS satellite measurements with allowance for radiation polarization. // Optika Atmosfery i Okeana. 2019. V. 32. No. 08. P. 641–649 [in Russian].
Copy the reference to clipboard
Abstract:

The algorithm of reconstruction of the Earth surface reflection coefficients with allowance for radiation polarization is considered. The algorithm was approbated for 5 channels of the MODIS device and three territories: south of the Tomsk region, Moscow region, and Irkutsk region. To estimate the error of the algorithm, test points in the center of coniferous large forest areas in summer season were used. Results obtained using the MOD09 algorithm with and without allowance for radiation polarization and results obtained without atmospheric correction are compared with measurement data considered to be reference ones. The comparison demonstrates that the average values obtained by the suggested algorithm with allowance for polarization are closer to the reference data than those obtained using the MOD09 NASA algorithm in the first, third, and fourth MODIS channels, and the difference on the same order of magnitude is observed in the second MODIS channel. In the eighth MODIS channel, one algorithm is preferable in some situations, and another algorithm is preferable in other situations.

Keywords:

atmospheric correction, Earth surface reflection coefficient, polarization, Monte Carlo method

References:

  1. Otterman J., Fraser R.S. Adjacency effects on imaging by surface reflection and atmospheric scattering: Cross radiance to zenith // Appl. Opt. 1979. V. 18, N 16. P. 2852–2860.
  2. Vermote E.F., Vermeulen A. Atmospheric correction algorithm: Spectral reflectances (MOD09). Algorithm Theoretical Background document, version 4.0. 1999. [Electron resource]. URL: http://modis.gsfc.nasa.gov/atbd/atbd_nod08.pdf (last access: 9.03.2019).
  3. Putsay M. A simple atmospheric correction method for the short wave satellite images // Int. J. Remote Sens. 1992. V. 13, N 8. P. 1549–1558.
  4. Reinersman P.N., Carder K.L. Monte Carlo simulation of the atmospheric point-spread function with an application to correction for the adjacency effect // Appl. Opt. 1995. V. 34, N 21. P. 4453–4471.
  5. Breon F.M., Vermote E. Correction of MODIS surface reflectance time series for BRDF effects // Remote Sens. Environ. 2012. V. 125. P. 1–9.
  6. Lyapustin A., Martonchik J., Wang Y., Laszlo I., Korkin S. Multiangle implementation of atmospheric correction (MAIAC): 3. Atmospheric correction // Remote Sens. Environ. 2012. V. 127. P. 385–393.
  7. Vermote E.F., Saleous N.El., Justice C.O., Kaufman Y.J., Privette J.L., Remer L., Roger J.C., Tanré D. Atmospheric correction of visible to middle-infrared EOS-MODIS data over land surfaces: Background, operational algorithm and validation // J. Geophys. Res. D. 1997. V. 102, N 14. P. 17,131–17,141.
  8. Tanré D., Holben B.N., Kaufman Y.J. Atmospheric Correction Algorithm for NOAA-AVHRR Products: Theory and Application // IEEE Trans. Geosci. Remote Sens. 1992. V. 30, N 2. P. 231–248.
  9. Diner D.J., Martonchik J.V. Atmospheric Transfer of Radiation above an Inhomogeneous Non-Lambertian Reflective Ground. 1. Theory // J. Quant. Spectrosc. Radiat. Transfer. 1984. V. 31, N 2. P. 97–125.
  10. Lee T.Y., Kaufman Y.J. Non-Lambertian Effects on Remote-Sensing of Surface Reflectance and Vegetation Index // IEEE Trans. Geosci. Remote Sens. 1986. V. 24, N 5. P. 699–708.
  11. Leroy M., Deuzé J., Bréon F., Hautecoeur O., Herman M., Buriez J., Tanré D., Bouffies S., Chazette P., Roujean J. Retrieval of atmospheric properties and surface bidirectional reflectances over land from POLDER/ADEOS // J. Geophys. Res. 1997. V. 102. P. 17023–17037.
  12. Roujean J.-L., Tanré D., Breon F.-M., Deuze J.-L. Retrieval of land surface parameters from airborne POLDER bidirectional reflectance distribution function during HAPEX-Sahel // J. Geophys. Res. Atmos. D. 1997. V. 102, N 10. P. 11201–11218.
  13. Diner D.J., Martonchik J.V., Borel C., Gerstl S.A.W., Gordon H.R., Knyazikhin Y., Myneni R., Pinty B., Verstraete M. Multi-Angle Imaging Spectro-Radiometer Level 2 Surface Retrieval Algorithm Theoretical Basis. Jet Propulsion Laboratory: La Canada Flintridge, CA, USA, 2008.
  14. Katkovskij L.V. Parametrizatsiya uhodyashchego izlucheniya dlya bystroj atmosfernoj korrektsii giperspektral'nyh izobrazhenij // Optika atmosf. i okeana. 2016. V. 29, N 9. P. 778–784.
  15. Lysenko S.A. Atmosfernaya korrektsiya mnogospektral'nyh sputnikovyh snimkov na osnove approksimatsionnoj modeli perenosa solnechnogo izlucheniya // Optika atmosf. i okeana. 2017. V. 30, N 9. P. 775–788; Lisenkо S.А. Atmospheric correction of multispectral satellite images based on the solar radiation transfer approximation model // Atmos. Ocean. Opt. 2018. V. 31, N 1. P. 72–85.
  16. Tanré D., Holben B.N., Kaufman Y.J. Atmospheric correction algorithm for NOAA-AVHRR products: Theory and application // IEEE Trans. Geosci. Remote Sens. 1992. V. 30, N 2. P. 231–248.
  17. Tarasenkov M.V., Belov V.V. Kompleks programm vosstanovleniya otrazhatel'nyh svojstv zemnoj poverhnosti v vidimom i UF-diapazonah // Optika atmosf. i okeana. 2014. V. 27, N 7. P. 622–627; Таrаsеnkov М.V., Bеlоv V.V. Software package for reconstructing reflective properties of the Earth’s surface in the visible and UV ranges // Atmos. Ocean. Opt. 2015. V. 28, N 1. P. 89–94.
  18. Tarasenkov M.V., Belov V.V., Engel M.V. Algorithm for reconstruction of the Earth surface reflectance from Modis satellite measurements in a turbid atmosphere // Proc. SPIE. 2018. V. 10833. CID: 10833 16 [10833-58].
  19. Yin Gaofei, Li Ainong, Wu Shengbiao, Fan Weiliang, Zeng Yelu, Yan Kai, Xu Baodong, Li Jing, Liu Qinhuo. PLC: A simple and semi-physical topographic correction method for vegetation canopies based on path length correction // Remote Sens. Environ. 2018. V. 215. P. 184–198.
  20. Egorov V.A.,Bartalev S.A. Metod radiometricheskoj korrektsii iskazhenij otrazhatel'nyh harakteristik zemnogo pokrova v dannyh sputnikovyh izmerenij, vyzvannyh vliyaniem rel'efa mestnosti // Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa. 2016. V. 13, N 5. P. 192–201.
  21. Tarasenkov M.V., Kirnos I.V., Belov V.V. Nablyudenie zemnoj poverhnosti iz kosmosa cherez prosvet v oblachnom pole // Optika atmosf. i okeana. 2016. V. 29, N 9. P. 767–771; Таrаsеnkov М.V., Kirnos I.V., Bеlоv V.V. Observation of the Earth’s surface from the space through a gap in a cloud field // Atmos. Ocean. Opt. 2017. V. 30, N 1. P. 39–43.
  22. Germogenova T.A. O vliyanii polyarizatsii na raspredelenie intensivnosti rasseyannogo izlucheniya // Izv. AN SSSR. Ser. geofiz. 1962. N 6. P. 854–856.
  23. Sushkevich T.A. Matematicheskie modeli perenosa izlucheniya. M.: BINON. Laboratoriya znanij, 2005. 661 p.
  24. Nazaraliev M.A. Statisticheskoe modelirovanie radiatsionnyh protsessov v atmosfere. M.: Nauka, 1990. 227 p.
  25. Zimovaya A.V., Tarasenkov M.V., Belov V.V. Vliyanie polyarizatsii izlucheniya na vosstanovlenie koeffitsienta otrazheniya zemnoj poverhnosti po sputnikovym dannym v vidimom diapazone dlin voln // Optika atmosf. i okeana. 2017. V. 30, N 11. P. 927–932; Zimovaya А.V., Таrаsеnkov М.V., Bеlоv V.V. Radiation polarization effect on the retrieval of the Earth’s surface reflection coefficient from satellite data in the visible wavelength range // Atmos. Ocean. Opt. 2018. V. 31, N 2. P. 131–136.
  26.  Zimovaya A.V., Tarasenkov M.V., Belov V.V. Effect of radiation polarization on reconstruction of the earth’s surface reflection coefficient from satellite data in the visible wavelength range // Proc. SPIE. 2017. V. 10466. CID: 10466 10 [10466-54].
  27. Aerosol Robotic Network (AERONET). URL: http://aeronet.gsfc.nasa.gov (last access: 9.03.2019).
  28. Boren K., Hafmen D. Pogloshchenie i rasseyanie sveta malymi chastitsami. M.: Mir, 1986. 664 p.
  29. Kneizys F.X., Shettle E.P., Anderson G.P., Abreu L.W., Chetwynd J.H., Selby J.E.A. Clough S.A., Gallery W.O. User guide to LOWTRAN-7. ARGL-TR-86-0177. ERP 2010. Hansom AFB. MA 01731. 137 p.
  30. URL: https://lpdaac.usgs.gov/data_access (last access: 9.03.2019).
  31. Bucholtz A. Rayleigh-scattering calculations for the terrestrial atmosphere // Appl. Opt. 1995. V. 34, N 15. P. 2765–2773.
  32. Marchuk G.I., Mihajlov G.A., Nazaraliev M.A., Darbinyan R.A., Kargin B.A., Elepov B.S. Metod Monte-Karlov atmosfernoj optike. Novosibirsk: Nauka, 1976. 284 p.
  33. Belov V.V., Tarasenkov M.V., Piskunov K.P. Parametricheskaya model' solnechnoj dymki v vidimoj i UF-oblasti spektra // Optika atmosf. i okeana. 2010. V. 23, N 4. P. 294–297.
  34. Krinov E.L. Spektral'naya otrazhatel'naya sposobnost' prirodnyh obrazovanij. L.: Izd-vo AN SSSR, 1947. 271 p.

Back