Vol. 32, issue 08, article # 3

Kanev F.Yu., Aksenov V.P., Starikov F.A., Dolgopolov Yu.V., Kopalkin A.V., Veretekhin I.D. Detection of an optical vortex topological charge and coordinates by analyzing branches of an interference pattern. // Optika Atmosfery i Okeana. 2019. V. 32. No. 08. P. 620–627 [in Russian].
Copy the reference to clipboard

An algorithm of optical vortex detection is considered in the article and a computer application based on the algorithm is described. A vortex is localized as a branching point of an interference pattern. As the input data for the application a BMP-file containing an image of interferogram is used, at the output we obtain information about the vortex topological charge and its coordinates. As is shown in the article, precision of the developed algorithm is not lower than that of known analogues, while the amount of obtained information is larger.


singular optics, optical vortex, singular point of a wavefront, topological charge


  1. Gahagan K.T., Swartzlander G.A. Junior. Trapping of low-index microparticles in an optical vortex // J. Opt. Soc. Am. B. 1998. V. 15, N. 2. P. 524–534.
  2. Gahagan K.T., Swartzlander G.A. Junior. Simultaneous trapping of low-index and high-index microparticles observed with an optical-vortex trap // J. Opt. Soc. Am. B. 1999. V. 16, N. 4. P. 533–539.
  3. Yan Yan, Guodong Xie, Lavery M.P.J., Hao Huang, Ahmed N., Changjing Bao, Yongxiong Ren, Yinwen Cao, Long Li, Zhe Zhao, Molisch A.F., Tur M., Padgett M.J., Willner A.E. High-capacity millimetre-wave communications with orbital angular momentum multiplexing // Nat. Comm. 2014. P. 1–9. DOI: 10.1038/ncomms5876. URL: www.nature.com/naturecommunications (last access: 25.02.2018).
  4. Aksenov V.P., Dudorov V.V., Kolosov V.V., Filimonov G.A. Formirovanie vihrevyh lazernyh puchkov s nulevym orbital'nym momentom i nenulevym topologicheskim zaryadom // Optika atmosf. i okeana. 2017. V. 30, N 11. P. 905–909.
  5. Passos M.H.M., Lemos M.R., Almieda S.R., Balthazar W.F., Da Silva L., Huguenin A.O. Speckle patterns produced by an optical vortex and its application to surface roughness measurements // Appl. Opt. 2017. V. 56, N 2. P. 330–335.
  6. Popiołek-Masajada A., Masajada J., Kurzynowski P. Analytical model of the optical vortex scanning microscope with a simple phase object // Photonics. 2017. V. 4, N 38. P. 1–14.
  7. Xinzhong Li, Yuping Tai, Liping Zhang, Huijuan Li, Liben Li. Characterization of dynamic random process using optical vortex metrology // Appl. Phys. B. 2014. V. 116. P. 901–909.
  8. Wei Wang, Yu Qiao, Reika Ishijima, Tomoaki Yokozeki, Daigo Honda, Akihiro Matsuda, Hanson S.G., Mitsuo Takeda. Constellation of phase singularities in a specklelike pattern for optical vortex metrology applied to biological kinematic analysis // Opt. Express. 2008. V. 16, N 18. P. 13908–13917.
  9. Berry M.V. Optical vortices evolution from helicoidal integer and fractional phase steps // J. Opt. A. Pure Appl. Opt. 2004. V. 6. P. 259–268.
  10. Starikov F.A., Aksenov V.P., Atuchin V.V., Izmailov I.V., Kanev F.Yu., Kochemasov G.G., Kudryashov A.V., Kulikov S.M., Malakhov Y.I., Manachinsky A.N., Maslov N.V., Ogorodnikov A.V., Soldatenkov I.S., Sukharev S.A. Wave front sensing of an optical vortex and its correction in the close-loop adaptive system with bimorph mirror // Proc. SPIE. 2007. V. 6747. P. 1–8.
  11.  Matsumoto N., Ando T., Inoue T., Ohtake Y., Fukuchi N., Hara T. Generation of high-quality higher-order Laguerre–Gaussian beams using liquid-crystal-on-silicon spatial light modulators // J. Opt. Soc. Am. A. 2008. V. 25, N 7. Р. 1642–1651.
  12. Denisenko V.G., Minovich A., Desyatnikov A.S., Krolikowski W., Soskin M.S., Kivshar Y.S. Mapping phases of singular scalar light fields // Opt. Lett. 2008. V. 33, N 1. P. 89–91.
  13. Patorski K., Pokorski K. Examination of singular scalar light fields using wavelet processing of fork fringes // Appl. Opt. 2011. V. 50, N 5. P. 773–781.
  14. White A.G., Smith C.P., Heckenberg N.R., Rubinsztein-Dunlop H., McDuff R., Weiss C.O., Tamm Chr. Interferometric measurements of phase singularities in the output of a visible laser // J. Mod. Opt. 38:12. P. 2531–2541. DOI: 10.1080/09500349114552651. URL: http://dx.doi.org/10.1080/09500349114552651 (last access: 25.03.2018).
  15.  Aksenov V.P., Ustinov A.V. Posledejstvie opticheskih vihrej v prostranstvennoj evolyutsii «vihrevyh» lazernyh puchkov // Optika atmosf. i okeana. 2003. V. 16, N 8. P. 680–687.