Vol. 32, issue 08, article # 2

Smalikho I.N., Banakh V.A., Falits A.V., Sukharev A.A. An experiment on the study of aircraft wake vortices at the airfield of Tolmachevo Airport in 2018. // Optika Atmosfery i Okeana. 2019. V. 32. No. 08. P. 609–619 [in Russian].
Copy the reference to clipboard

In order to study the wake vortices of landing aircrafts, we carried out an experiment on the airfield of Tolmachevo Airport in 2018, which involved Stream Line lidar, AMK-03 sonic anemometer, and MTP-5 temperature profiler. The limits of applicability of the radial velocity method for estimation of wake vortix parameters from lidar measurements were determinied depending on the aircraft type and the wind turbulence strength. The analysis of the experimental results makes it possible to identify features of the spatial dynamics and evolution of aircraft wake vortices during different states of the surface air layer. In particular, it is found that in the case of low average crosswind speed and moderate wind turbulence, the lifetime of the vortex formed behind a landing large MD-11F aircraft can attain almost 4 min.


coherent Doppler lidar, aircraft wake vortices


  1. Kameyama S., Ando T., Asaka K., Hirano Y., Wadaka S. Compact all-fiber pulsed coherent Doppler lidar system for wind sensing // Appl. Opt. 2007. V. 46, N 11. P. 1953–1962.
  2. Pierson G., Davies F., Collier C. An analysis of performance of the UFAM Pulsed Doppler lidar for the observing the boundary layer // J. Atmos. Ocean. Technol. 2009. V. 26, N 2. P. 240–250.
  3. Vasiljevic N., Lea G., Courtney M., Cariou J.P., Mann J., Mikkelsen T. Long-range wind scanner system // Remote Sens. 2016. V. 8. P. 896. DOI:10.3390/rs8110896.
  4. Wu S., Liu B., Liu J., Zhai X., Feng C., Wang G., Zhang H., Yin J., Wang X., Li R., Gallacher D. Wind turbine wake visualization and characteristics analysis by Doppler lidar // Opt. Express. 2016. V. 24, N 10. DOI:10.1364/OE.24.00A762.
  5. Smalikho I.N., Banakh V.A. Estimation of aircraft wake vortex parameters from data measured with 1.5 micron coherent Doppler lidar // Opt. Lett. 2015. V. 40, N 14. P. 3408–3411.
  6. Smalikho I.N., Banakh V.A., Holzäpfel F., Rahm S. Method of radial velocities for the estimation of aircraft wake vortex parameters from data measured by coherent Doppler lidar // Opt. Express. 2015. V. 23, N 19. P. A1194–A1207.
  7. Yoshikawa E., Matayoshi N. Aircraft wake vortex retrieval method on lidar lateral range-height indicator observation // AIAA J. 2017. V. 5. N 7. P. 2269–2278.
  8. Gao H., Li J., Chan P.W., Hon K.K., Wang X. Parameter-retrieval of dry-air wake vortices with a scanning Doppler lidar // Opt. Express. 2018. V. 26, N 13. P. 16377–16392.
  9. Wu S., Zhai X., Liu B. Aircraft wake vortex and turbulence measurement under near-ground effect using coherent Doppler lidar // Opt. Express. 2019. V. 27, N 2. P. 1142–1163.
  10. Smaliho I.N., Banah V.A., Falits A.V. Izmereniya parametrov vihrevyh sledov samoletov kogerentnym doplerovskim lidarom Stream Line // Optika atmosf. i okeana. 2017. V. 30, N 8. P. 664–671.
  11. Smaliho I.N. Uchet vliyaniya podstilayushchej poverhnosti na samoletnye vihri pri otsenivanii ih tsirkulyatsii iz lidarnyh izmerenij // Оптика атмосф. и океана. 2019. Т. 32, № 7. С. 562–575.
  12. Банах В.А., Смалихо И.Н. Когерентные доплеровские ветровые лидары в турбулентной атмосфере. Томск: Изд-во ИОА СО РАН, 2013. 304 с.
  13. Gerz T., Holzäpfel F., Darracq D. Commercial aircraft wake vortices // Prog. Aerosp. Sci. 2002. V. 38. P. 181–208.
  14. Holzäpfel F. Probabilistic two-phase wake vortex decay and transport model // J. Aircr. 2003. V. 40, N 2. P. 323–331.