Vol. 32, issue 07, article # 8

Smalikho I.N. Taking into account of the ground effect on aircraft wake vortices when evaluating their circulation from lidar measurements. // Optika Atmosfery i Okeana. 2019. V. 32. No. 07. P. 562–575 [in Russian].
Copy the reference to clipboard
Abstract:

The previously developed algorithm for estimating the circulation of aircraft wake vortices from measurements by a Stream Line pulsed coherent Doppler lidar has been improved by using the model of a pair of aircraft vortices in the algorithm that takes into account the ground effect on the spatial dynamics and evolution of the vortices. In a numerical experiment, it was shown that an improved algorithm allows obtaining a result with high accuracy, while the approach used earlier overestimates the lidar assessment of vortex circulation by about 10%.

Keywords:

coherent Doppler lidar, aircraft wake vortices

References:

  1. Babkin V.I., Belotserkovskij A.S., Turchak L.I., Baranov N.A., Zamyatin A.I., Kanevskij M.I., Morozov V.V., Pasekunov I.V., Chizhov N.Yu. Sistemy obespecheniya vikhrevoj bezopasnosti poletov letatel'nykh apparatov. M.: Nauka, 2008. 373 p.
  2. Hannon S.M., Thomson J.A. Aircraft wake vortex detection and measurement with pulsed solid-state coherent laser radar // J. Mod. Opt. 1994. V. 41, N 11. P. 2175–2196.
  3. Köpp F., Rahm S., Smalikho I. Characterization of aircraft wake vortices by 2-mm pulsed Doppler lidar // J. Atmos. Ocean. Technol. 2004. V. 21, N 2. P. 194–206.
  4. Frehlich R.G., Sharman R. Maximum likelihood estimates of vortex parameters from simulated coherent Doppler lidar data // J. Atmos. Ocean. Technol. 2005. V. 22, N 2. P. 117–129.
  5. Rahm S., Smalikho I. Aircraft wake vortex measurement with airborne coherent Doppler lidar // J. Aircr. 2008. V. 45, N 4. P. 1148–1155.
  6. Wassaf H.S., Burnham D.C., Wang F.Y. Wake vortex tangential velocity adaptive spectral (TVAS) algorithm for pulsed lidar systems // Proc. of the 16th Bi-annual Coherent Laser Radar Conf. Session 9 – Wind Measurement Systems II. 20–24 June 2011. California. 4 p.
  7. Smalikho I.N., Banakh V.A. Estimation of aircraft wake vortex parameters from data measured with 1.5 micron coherent Doppler lidar // Opt. Lett. 2015. V. 40, N 14. P. 3408–3411.
  8. Smalikho I.N., Banakh V.A., Holzäpfel F., Rahm S. Method of radial velocities for the estimation of aircraft wake vortex parameters from data measured by coherent Doppler lidar // Opt. Express. 2015. V. 23, N 19. P. A1194–A1207.
  9. Yoshikawa E., Matayoshi N. Aircraft wake vortex retrieval method on lidar lateral range-height indicator observation // AIAA J. 2017. V. 55, N 7. P. 2269–2278.
  10. Gao H., Li J., Chan P.W., Hon K.K., Wang X. Parameter-retrieval of dry-air wake vortices with a scanning Doppler lidar // Opt. Express. 2018. V. 26, N 13. P. 16377–16392.
  11. Wu S., Zhai X., Liu B. Aircraft wake vortex and turbulence measurement under near-ground effect using coherent Doppler lidar // Opt. Express. 2019. V. 27, N 2. P. 1142–1163.
  12. Gerz T., Holzäpfel F., Darracq D. Commercial aircraft wake vortices // Prog. Aerosp. Sci. 2002. V. 38. P. 181–208.
  13. Robin R.E., Delisi D.P., Greene G.C. Algorithm for prediction of trailing vortex evolution // J. Aircr. 2001. V. 38, N 5. P. 911–917.
  14. Pierson G., Davies F., Collier C. An analysis of performance of the UFAM Pulsed Doppler lidar for the observing the boundary layer // J. Atmos. Ocean. Technol. 2009. V. 26, N 2. P. 240–250.
  15. Smalikho I.N., Banakh V.A., Falits A.V. Izmereniya parametrov vikhrevykh sledov samoletov kogerentnym doplerovskim lidarom Stream Line // Optika atmosf. i okeana. 2017. V. 30, N 8. P. 664–671; Smаlikhо I.N., Bаnаkh V.А., Fаlits А.V. Measurements of aircraft wake vortex parameters by a Stream Line Doppler lidar // Atmos. Ocean. Opt. 2017. V. 30, N 6. P. 588–595.
  16. Smalikho I.N., Banakh V.A., Falits A.V., Sukharev A.A. Eksperiment s tsel'yu izucheniya vikhrevykh sledov samoletov, provedennyj na letnom pole aeroporta Tolmachevo v 2018 year // Optika atmosf. i okeana. 2019 (in print).
  17. Banakh V.A., Smalikho I.N. Kogerentnye doplerovskie vetrovye lidary v turbulentnoj atmosfere. Tomsk: Izd-vo IOA SO RAN, 2013. 304 p.
  18. Lamb H. Hydrodynamics. New York: Dover, 1932. 592 p.
  19. Burnham D.C., Hallock J.N. Chicago monostatic acoustic vortex sensing system // U.S. Department of Transportation. DOT-TSC-FAA-79-103. 1982. 206 p.
  20. Schwarz C.W., Hahn K.U., Fischenberg D. Wake encounter severity assessment based on validated aerodynamic interaction models // AIAA Guidance, Navigation, and Control Conf., 2–5 August 2010, Toronto, Ontario, Canada. URL: http://www.wakenet.eu/ fileadmin/user_upload/News%26Publications/AIAA-237438-765.pdf

Back