Vol. 32, issue 07, article # 8

Smalikho I.N. Taking into account of the ground effect on aircraft wake vortices when evaluating their circulation from lidar measurements. // Optika Atmosfery i Okeana. 2019. V. 32. No. 07. P. 562–575 [in Russian].
Copy the reference to clipboard

The previously developed algorithm for estimating the circulation of aircraft wake vortices from measurements by a Stream Line pulsed coherent Doppler lidar has been improved by using the model of a pair of aircraft vortices in the algorithm that takes into account the ground effect on the spatial dynamics and evolution of the vortices. In a numerical experiment, it was shown that an improved algorithm allows obtaining a result with high accuracy, while the approach used earlier overestimates the lidar assessment of vortex circulation by about 10%.


coherent Doppler lidar, aircraft wake vortices


  1. Babkin V.I., Belotserkovskij A.S., Turchak L.I., Baranov N.A., Zamyatin A.I., Kanevskij M.I., Morozov V.V., Pasekunov I.V., Chizhov N.Yu. Sistemy obespecheniya vikhrevoj bezopasnosti poletov letatel'nykh apparatov. M.: Nauka, 2008. 373 p.
  2. Hannon S.M., Thomson J.A. Aircraft wake vortex detection and measurement with pulsed solid-state coherent laser radar // J. Mod. Opt. 1994. V. 41, N 11. P. 2175–2196.
  3. Köpp F., Rahm S., Smalikho I. Characterization of aircraft wake vortices by 2-mm pulsed Doppler lidar // J. Atmos. Ocean. Technol. 2004. V. 21, N 2. P. 194–206.
  4. Frehlich R.G., Sharman R. Maximum likelihood estimates of vortex parameters from simulated coherent Doppler lidar data // J. Atmos. Ocean. Technol. 2005. V. 22, N 2. P. 117–129.
  5. Rahm S., Smalikho I. Aircraft wake vortex measurement with airborne coherent Doppler lidar // J. Aircr. 2008. V. 45, N 4. P. 1148–1155.
  6. Wassaf H.S., Burnham D.C., Wang F.Y. Wake vortex tangential velocity adaptive spectral (TVAS) algorithm for pulsed lidar systems // Proc. of the 16th Bi-annual Coherent Laser Radar Conf. Session 9 – Wind Measurement Systems II. 20–24 June 2011. California. 4 p.
  7. Smalikho I.N., Banakh V.A. Estimation of aircraft wake vortex parameters from data measured with 1.5 micron coherent Doppler lidar // Opt. Lett. 2015. V. 40, N 14. P. 3408–3411.
  8. Smalikho I.N., Banakh V.A., Holzäpfel F., Rahm S. Method of radial velocities for the estimation of aircraft wake vortex parameters from data measured by coherent Doppler lidar // Opt. Express. 2015. V. 23, N 19. P. A1194–A1207.
  9. Yoshikawa E., Matayoshi N. Aircraft wake vortex retrieval method on lidar lateral range-height indicator observation // AIAA J. 2017. V. 55, N 7. P. 2269–2278.
  10. Gao H., Li J., Chan P.W., Hon K.K., Wang X. Parameter-retrieval of dry-air wake vortices with a scanning Doppler lidar // Opt. Express. 2018. V. 26, N 13. P. 16377–16392.
  11. Wu S., Zhai X., Liu B. Aircraft wake vortex and turbulence measurement under near-ground effect using coherent Doppler lidar // Opt. Express. 2019. V. 27, N 2. P. 1142–1163.
  12. Gerz T., Holzäpfel F., Darracq D. Commercial aircraft wake vortices // Prog. Aerosp. Sci. 2002. V. 38. P. 181–208.
  13. Robin R.E., Delisi D.P., Greene G.C. Algorithm for prediction of trailing vortex evolution // J. Aircr. 2001. V. 38, N 5. P. 911–917.
  14. Pierson G., Davies F., Collier C. An analysis of performance of the UFAM Pulsed Doppler lidar for the observing the boundary layer // J. Atmos. Ocean. Technol. 2009. V. 26, N 2. P. 240–250.
  15. Smalikho I.N., Banakh V.A., Falits A.V. Izmereniya parametrov vikhrevykh sledov samoletov kogerentnym doplerovskim lidarom Stream Line // Optika atmosf. i okeana. 2017. V. 30, N 8. P. 664–671; Smаlikhо I.N., Bаnаkh V.А., Fаlits А.V. Measurements of aircraft wake vortex parameters by a Stream Line Doppler lidar // Atmos. Ocean. Opt. 2017. V. 30, N 6. P. 588–595.
  16. Smalikho I.N., Banakh V.A., Falits A.V., Sukharev A.A. Eksperiment s tsel'yu izucheniya vikhrevykh sledov samoletov, provedennyj na letnom pole aeroporta Tolmachevo v 2018 year // Optika atmosf. i okeana. 2019 (in print).
  17. Banakh V.A., Smalikho I.N. Kogerentnye doplerovskie vetrovye lidary v turbulentnoj atmosfere. Tomsk: Izd-vo IOA SO RAN, 2013. 304 p.
  18. Lamb H. Hydrodynamics. New York: Dover, 1932. 592 p.
  19. Burnham D.C., Hallock J.N. Chicago monostatic acoustic vortex sensing system // U.S. Department of Transportation. DOT-TSC-FAA-79-103. 1982. 206 p.
  20. Schwarz C.W., Hahn K.U., Fischenberg D. Wake encounter severity assessment based on validated aerodynamic interaction models // AIAA Guidance, Navigation, and Control Conf., 2–5 August 2010, Toronto, Ontario, Canada. URL: http://www.wakenet.eu/ fileadmin/user_upload/News%26Publications/AIAA-237438-765.pdf