Vol. 32, issue 07, article # 2

Solodov A.A., Petrova T.M., Ponomarev Yu.N., Solodov A.M., Shаlygin A.S. Rotational dependence of line half-windth for fundamental band of CO2 confined in nanoporous aerogel. // Optika Atmosfery i Okeana. 2019. V. 32. No. 07. P. 516–518 [in Russian].
Copy the reference to clipboard
Abstract:

The absorption spectrum of carbon dioxide confined in aerogel have been measured in the 2250–2400 cm-1 region for the first time using a Bruker IFS 125HR FTIR spectrometer. Dependence of CO2 half-widths on rotational quantum numbers was studied and compared with the data available in literature.

Keywords:

CO2, aerogel, FTIR spectroscopy

References:

  1. Ponomarev Yu.N., Petrova T.M., Solodov A.M., Solodov A.A. IR spectroscopy of water vapor confined in nanoporous silica aerogel // Opt. Express. 2010. V. 18, N 25. P. 26062–26067.
  2. Petrova T.M., Ponomarev Yu.N., Solodov A.A., Solodov A.M., Danilyuk A.F. Spectroscopic nanoporometry of aerogel // JETP Lett. 2015. V. 101. P. 65–67.
  3. Solodov A.A., Petrova T.M., Ponomarev Yu.N., Solodov A.M. Influence of nanoconfinement on the rotational dependence of line half-widths for 2–0 band of carbon oxide // Chem. Phys. Lett. 2015. V. 637. P. 18–21.
  4. Solodov A.A., Petrova T.M., Ponomarev Yu.N., Solodov A.M., Glazkova E.A. Rotational dependeces of line half-widths for CO and CO2 confined in SiO2/Al2O3 xerogel // Mol. Phys. 2017. V. 115, N 14. P. 1708–1712.
  5. Solodov A.A., Petrova T.M., Ponomarev Yu.N., Solodov A.M., Danilyuk A.F. FTIR spectroscopy of 2–0 band of carbon monoxide confined in silica aerogels with different pore sizes // Mol. Phys. 2019. V. 117, N 1. P. 67–70.
  6. Petrova T.M., Ponomarev Yu.N., Solodov A.A., Solodov A.M., Danilyuk A.F. Line broadening of carbon dioxide confined in nanoporous aerogel // Proc. SPIE. 2016. V. 10035. P. 100350M.
  7. Hartmann J.-M., Sironneau V., Boulet C., Svensson T., Hodges J.T., Xu C.T. Infrared absorption by molecular gases as a probe of nanoporous silica xerogel and molecule-surface collisions: Low-pressure results // Phys. Rev. A. 2013. V. 87. P. 042506.
  8. Hartmann J.-M., Boulet C., Vander Auwera J., Hamzaoui H.El, Capoen B., Bouazaoui M. Line broadening of confined CO gas: From molecule-wall to molecule-molecule collisions with pressure // J. Chem. Phys. 2014. V. 140. P. 064302.
  9. Hartmann J.-M., Sironneau V., Boulet C., Svensson T., Hodges J.T., Xu C.T. Collisional broadening and spectral shapes of absorption lines of free and nanopore-confined O2 gas // Phys. Rev. A. 2013. V. 87. P. 032510.
  10. Hartmann J.-M., Vander Auwera J., Boulet C., Birot M., Dourges M.-A., Toupance T., Hamzaoui H.El, Ausset P., Carre Y., Kocon L., Capoen B., Bouazaoui M. Infrared absorption by molecular gases to probe porous materials and comparisons with other techniques // Micropor. Mesopor. Mater. 2017. V. 237. P. 31–37.
  11. Svensson T., Adolfsson E., Burresi M., Savo R., Can Xu, Wiersma D.S., Svanberg S. Pore size assessment based on wall collision broadening of spectral lines of confined gas: Experiments on strongly scattering nanoporous ceramics with fine-tuned pore sizes // Appl. Phys. B. 2013. V. 110, N 2. P. 147–154.
  12. Svensson T., Lewander M., Svanberg S. Laser absorption spectroscopy of water vapor confined in nanoporous alumina: Wall collision line broadening and gas diffusion dynamics // Opt. Express. 2010. V. 18, N 16. P. 16460–16473.
  13. Gordon I.E., Rothman L.S., Hill C., Kochanov R.V., Tan Y., Bernath P.F., Birk M., Boudon V., Chance K.V., Drouin B.J., Flaud J.-M., Gamache R.R., Hodges J.T., Jacquemart D., Perevalov V.I., Perrin A., Shine K.P., Smith M.-A.H., Tennyson J., Toon G.C., Tran H., Tyuterev V.G., Barbe A., Császár A.G., Devi V.M., Furtenbacher T., Harrison J.J., Hartmann J.-M., Jolly A., Johnson T.J., Karman T., Kleiner I., Kyuberis A.A., Loos J., Lyulin O.M., Massie S.T., Mikhailenko S.N., Moazzen-Ahmadi N., Müller H.S.P., Naumenko O.V., Nikitin A.V., Polyansky O.L., Rey M., Rotger M., Sharpe S.W., Sung K., Starikova E., Tashkun S.A., Auwera J. Vander, Wagner G., Wilzewski J., Wcisło P., Yu S., Zak E.J. The HITRAN 2016 molecular spectroscopic database // J. Quant. Spectrosc. Radiat. Transfer. 2017. V. 203. P. 3–69.
  14. Rolison D.R., Dunn B. Electrically conductive oxide aerogels: New materials in electrochemistry // J. Mater. Chem. 2001. V. 11. P. 963–980.

Back