Vol. 32, issue 06, article # 10

Golovko V. V., Belanova A. P., Zueva G. A. Study of the cluster composition of pollen particles entering the atmosphere during the bloom of anemophilic plants. // Optika Atmosfery i Okeana. 2019. V. 32. No. 06. P. 476–481. DOI: 10.15372/AOO20190610 [in Russian].
Copy the reference to clipboard

Abstract:

Results of the study of pollen particles in the atmosphere are presented. A fraction of clusters, which consist of two and more pollen grains, of the total number of pollen particles entering the atmosphere is estimated. It is shown that although the anemophilous plants exhibit morphological peculiarities that prevent cluster formation, many similar clusters were formed in all experiments. The fraction of pollen grains could exceed 50% of the total number of pollen grains entering the atmosphere.

Keywords:

pollen, anemophilous plants, atmospheric aerosol, clusters

References:

  1. Ackerman J.D. Abiotic pollen and pollination: Ecological, functional, and evolutionary perspectives // Plant Syst. Evol. 2000 V. 222. P. 167–185.
  2. Despre V.R., Huffman A.J., Burrows S.M., Hoose C., Safatov A.S., Buryak G., Fröhlich-Nowoisky J., Elbert W., Andreae M.O., Pösch U., Jaenicke R. Primary biological aerosol particles in the atmosphere: A review // Tellus В. 2012. V. 64. P. 1–58.
  3. Barrett S.C.H. The evolution of mating strategies in flowering plants // Trends in Plant Science. 1998. V. 3, N 9. P. 335–341.
  4. Pen'kovskaya Ye.F. Konspekt flory okrestnostej Akademgorodka (Novosibirskaya oblast') // Novosti geografii i sistematiki rastenij Sibiri. Novosibirsk. 1973. P. 30–88.
  5. Niklas K.J. The aerodynamics of wind pollination // Bot. Rev. 1985. V. 51. P. 328–386.
  6. Golovko V.V., Kutsenogij K.P., Istomin V.L. Schetnyye i massovyye kontsentratsii pyl'tsevoj komponenty atmosfernogo aerozolya v okrestnostyah g. Novosibirska v period tsveteniya drevesnyh rastenij // Optika atmosf. i okeana. 2015. V. 28, N 6. P. 529–533.
  7. Raynor G.S., Ogden E.C., Haes J.V. Dispersion and deposition of Ragweed Pollen from experimental sources // J. Appl. Meteorol. 1970. V. 9, N 6, P. 885–895.
  8. Bianchi D.E., Schwemmin D.J., Wagner W.H. Pollen release in the Common Ragweed (Ambrosia artemisiifolia) // Bot. Gaz. 1959. V. 120, N 4. P. 235–243.
  9. Blackmore S., Barnes Y.S. Harmomegathic mechanisms in pollen grains. // Pollen and Spores: Form and function. London: Academic Press, 1986. P. 137–149.
  10. Culley T.M., Weller S.W., Sakai A.K. The evolution of wind pollination in angiosperms // Trends Ecol. Evol. 2002. V. 17, N 8. P. 361–369.
  11. Jackson S.T., Lypord M.E. Pollen dispersal models in quaternary plant ecology: Assumptions, parameters, and prescriptions // Bot. Rev. 1999. V. 65, N 1, P. 39–74.
  12. Harrington J.B., Kurt M. Ragweed pollen density // Am. J. Bot. 1963. V. 50, N 6. P. 532–539.
  13. Ogden E.C., Haes J.V., Raynor G.S. Diurnal patterns of pollen emission in Ambrosia, Pleum, Zea, and Ricinus // Am. J. Bot. 1969. V. 56, N 1. P. 16–21.
  14. Istomin V.L., Kutsenogij K.P., Golovko V.V. Opredeleniye aerodinamicheskih harakteristik pyl'tsy // Aerozoli Sibiri. Novosibirsk: Izd-vo SO RAN, 2006. P. 260–282.