Vol. 32, issue 05, article # 4

Afanas'ev A.L., Banakh V.A., Marakasov D.A. Monitoring of wind conditions and indication of wake tracks in the area of the airport runway by the passive optical method. // Optika Atmosfery i Okeana. 2019. V. 32. No. 05. P. 365–370 [in Russian].
Copy the reference to clipboard

The wind speed and atmospheric turbulence in the airport runway were measured using a passive optical method based on the correlation analysis of turbulent distortions of distant objects of observation. The optical path was organized in the area of the ground section of the plane descent glidepath near the start of the runway. After the aircraft passed above the line of sight of the meter, significant velocity emissions and increased turbulence, caused by the wake, against the background of a moderate side wind were stably recorded. The results indicate the practical applicability of this method for instrumental indication of the presence or absence of wake vortex tracks over the airport. This information can be useful in assessing the safe intervals in the process of organizing departure and landings of aircraft.


crosswind, turbulence, aircraft vortex, air transport safety, passive optical monitoring


  1. Rossow V.J. Lift-generated vortex wakes of subsonic transport aircraft // Prog. Aerospace Sci. 1999. V. 35, iss. 6. P. 507–660.
  2. Harris M., Young R.I., Köpp F., Dolfi A., Cariou J.-P. Wake vortex detection and monitoring // Aerospace Sci. Technol. 2002. V. 6, iss. 5. P. 325–331.
  3. Smalikho I.N., Banakh V.A. Estimation of aircraft wake vortex parameters from data measured with 1.5 mcm coherent Doppler lidar // Opt. Lett. 2015. V. 40, N 14. P. 3408–3411.
  4. Smalikho I.N., Banakh V.A., Holzäpfel F., Rahm S. Otsenivanie parametrov samoletnykh vikhrej iz massiva radial'nykh skorostej, izmerennykh kogerentnym doplerovskim lidarom // Optika atmosfery i okeana. 2015. V. 28, N 8. P. 742–750.
  5. Smalikho I.N., Banakh V.A., Falits A.V. Izmereniya parametrov vikhrevykh sledov samoletov kogerentnym doplerovskim lidarom Stream Line // Optika atmosfery i okeana. 2017. V. 30, N 8. P. 664–671; Smalikho N.,  Banakh V.A., Falits A.V. Measurements of aircraft wake vortex parameters by a Stream Line Doppler lidar // Atmos. Ocean. Opt. 2017. V. 30, N 6. P. 588–595.
  6. Lawrence R.S., Ochs G.R., Clifford S.F. Use of scintillations to measure average wind across a light beam // Appl. Opt. 1972. V. 11, N 2. P. 239–243.
  7. Zuev V.Е., Banakh V.A., Pokasov V.V. Optika turbulentnoj atmosfery. L.: Gidrometeoizdat, 1988. 270 p.
  8. Van Dinther D., Hartogensis O.K., Holtslag A.A.M. Runway Wake Vortex, Crosswind, and Visibility Detection with a Scintillometer at Schiphol Airport // Bound.-Lay. Meteorol. 2015. V. 157, iss. 3. P. 481–499.
  9. Afanas'ev A.L., Banakh V.A., Gordeev Е.V., Marakasov D.A., Sukharev A.A., Falits A.V. Verifikatsiya korrelyatsionnogo passivnogo opticheskogo izmeritelya poperechnoj skorosti vetra v eksperimentakh s doplerovskim vetrovym lidarom // Optika atmosfery i okeana. 2017. V. 30, N 8. P. 657–663; Afanasiev A.L., Banakh V.A., Gordeev E.V., Marakasov D.A., Sukharev A.A., Falits A.V. Verification of a passive correlation optical crosswind velocity meter in experiments with a Doppler wind lidar // Atmos. Ocean. Opt. 2017. V. 30, N 6. P. 574–580.
  10. Afanas'ev A.L., Banakh V.A., Rostov A.P. Otsenivanie integral'noj skorosti vetra i turbulentnosti v atmosfere po iskazheniyam videoizobrazhenij estestvenno osveshhennykh ob"ektov // Optika atmosfery i okeana. 2016. V. 29, N 4. P. 285–293; Afanasiev A.L., Banakh V.A., Rostov A.P. Estimation of the integral wind velocity and turbulence in the atmosphere from distortions of optical images of naturally illuminated objects // Atmos. Ocean. Opt. 2016. V. 29, N 5. P. 422–430.
  11. Afanas'ev A.L., Banakh V.A., Marakasov D.A. Sravnitel'nye otsenki skorosti poperechnogo vetra iz opticheskikh i akusticheskikh izmerenij v prizemnom sloe atmosfery // Optika atmosfery i okeana. 2017. V. 30, N 8. P. 651–657; Afanasiev A.L., Banakh V.A., Marakasov D.A. Comparative Assessments of the Crosswind Speed from Optical and Acoustic Measurements in the Surface Air Layer // Atmos. Ocean. Opt. 2018. V. 31, N 1. P. 43–48.
  12. Afanasiev A.L., Banakh V.A., Marakasov D.A., Rostov A.P. Field tests of a passive optical meter of the structure characteristic of refractive index // Proc. SPIE. 2017. V. 10466. doi: 10.1117/12.2287118.
  13. Spravochnik po spetsial'nym funktsiyam s formulami, grafikami i matematicheskimi tablitsami. M. Abramovits, I. Stigan (red.). M.: Nauka, 1979. 832 p.
  14. Lukin V.P. Adaptivnaya sistema formirovaniya lazernykh puchkov v atmosfere, ispol'zuyushhaya nekogerentnye izobrazheniya v kachestve opornykh istochnikov // Optika atmosfery i okeana. 2013. V. 26, N 2, P. 175–181; Lukin V.P. Adaptive system for the formation of laser beams in the atmosphere by use of incoherent images as reference sources // Atmos. Ocean. Opt. 2013. V. 26, N 4. P. 345–351.