Vol. 32, issue 05, article # 1

Geints Yu.E., Zemlyanov A.A., Minina O.V. Simulation of femtosecond laser pulses self-focusing with normal dispersion in air by the method of diffraction-beam tubes. // Optika Atmosfery i Okeana. 2019. V. 32. No. 05. P. 337–345 [in Russian].
Copy the reference to clipboard
Abstract:

Based on the numerical simulation and qualitative analysis, the effect of the group velocity dispersion on the formation of light structures during self-focusing and filamentation of femtosecond titanium-sapphire laser pulses in air was studied. It was found that dispersion occurs when the dispersion length is not the smallest process scale. Based on the results of numerical solutions of the nonlinear Schrödinger equation in a Kerr-plasma dissipative dispersion medium using the method of diffraction-beam tubes, the main regularities of filamentation of femtosecond laser pulses in air at various pulse durations, initial beam radii, and peak emission powers were determined. It was shown that the relative (normalized to Rayleigh length) coordinate of the beginning of filamentation increases with increasing the dispersion distortion of the pulse. The length of the filamentation channel is reduced. For shorter laser pulses (tens of femtoseconds) the filamentation failure is observed, when the laser beam radius is increased. For this class of pulses, an increase in the size of the energy replenishing diffraction-beam tube occurs, and the angular divergence of the post-filamentation light channels also increases.

Keywords:

femtosecond laser pulses, self-focusing, filamentation, diffraction-beam tube, normal dispersion

References:

1. Self-focusing: Past and Present. Fundamentals and prospects // Top. Appl. Phys. / R.W. Boyd, S.G. Lukishova, Y.R. Shen (eds.). Berlin: Springer, 2009.  605 p.
2. Couairon A., Myzyrowicz A. Femtosecond filamentation in transparent media // Phys. Rep. 2007. V. 441, N 2–4. P. 47–189.
3. Polynkin P., Kolesik M. Critical power for self-focusing in the case of ultrashort laser pulses // Phys. Rev. A. 2013. V. 87. P. 053829-1–5.
4. Ranka J.K., Schirmer R.W., Gaeta A.L. Observation of pulse splitting in nonlinear dispersive media // Phys. Rev. Lett. 1996. V. 77, N 18. P. 3783–3786.
5. Berge L., Mauger S., Skupin S. Multifilamentation of powerful optical pulses in silica // Phys. Rev. A. 2010. V. 81. P. 013817-1–10.
6. Chernev P., Petrov V. Self-focusing of light pulses in the presence of normal group-velocity dispersion // Opt. Lett. 1992. V. 17, iss. 3. Р. 172–174.
7. Liu W., Chin S.L. Direct measurement of the critical power of femtosecond Ti:Sapphire laser pulse in air // Opt. Exp. 2005. V. 13, iss. 15. P. 5750–5755.
8. Luther G.G., Wright E.M., Moloney J.V., Newell A.C. Self-focusing threshold in normally dispersive media // Opt. Lett. 1994. V. 19, N 12. P. 862–864.
9. Gejnts Yu.E., Zemlyanov A.A. Harakteristiki filamentov pri rasprostranenii moshchnogo femtosekundnogo lazernogo izlucheniya v vozduhe i v vode: I. Kachestvennyj analiz // Optika atmosf. i okeana. 2010. V. 23, N 9. P. 749–756. Geints Yu.E., Zemlyanov A.A. Characteristics of filaments during high-power femtosecond laser radiation propagation in air and water: I. Qualitative analysis // Atmos. Ocean. Opt. 2011. V. 24, N 2. Р. 144–151.
10. Zuev V.Е., Zemlyanov A.A., Kopytin Yu.D. Nelinejnaya optika atmosfery. L.: Gidrometeoizdat, 1989. 256 p.
11. Gejnts Yu.E., Zemlyanov A.A., Minina O.V. Difraktsionno-luchevaya optika filamentatsii: I. Formalizm difraktsionnyh luchej i svetovyh trubok // Optika atmosf. i okeana. 2018. V. 31, N 5. P. 364–371; Geints Yu.E., Zemlyanov A.A., Minina O.V. Diffraction-beam optics of filamentation: I – Formalism of diffraction beams and light tubes // Atmos. Ocean. Opt. 2018. V. 31, N 6. Р. 611–618.
12. Gejnts Yu.E., Zemlyanov A.A., Minina O.V. Difraktsionno-luchevaya optika filamentatsii: II. Difraktsionno-luchevaya kartina filamentatsii lazernogo impul'sa // Optika atmosf. i okeana. 2018. V. 31, N 7. P. 515–522; Geints Yu.E., Zemlyanov A.A., Minina O.V. Diffraction-beam optics of filamentation: II - Diffraction-beam pattern of laser pulse filamentation // Atmos. Ocean. Opt. 2018. V. 31, N 6. P. 619–625.
13. Gejnts Yu.E., Zemlyanov A.A., Minina O.V. Modelirovanie samofokusirovki femtosekundnyh lazernyh impul'sov v vozduhe metodom difraktsionnyh luchej i svetovyh trubok // Optika atmosf. i okeana. 2019. V. 32, N 2. P. 120–130.
14. Zemlyanov A.A., Bulygin A.D., Gejnts Yu.E., Minina O.V. Dinamika svetovyh struktur pri filamentatsii femtosekundnyh lazernyh impul'sov v vozduhe // Optika atmosf. i okeana. 2016. V. 29, N 5. P. 359–368; Zemlyanov A.A., Bulygin A.D., Geints Yu.E., Minina O.V. Dynamics of light structures during filamentation of femtosecond laser pulses in air // Atmos. Ocean. Opt. 2016. V. 29, N 5. Р. 395–403.
15. Liu W., Gravel J.-F., Theberge F., Becker A., Chin S.L. Background reservoir: Its crucial role for long-distance propagation of femtosecond laser pulses in air // Appl. Phys. B. 2005. V. 80, N 7. P. 857–860.
 

Back