Vol. 32, issue 04, article # 10

Sаmygina E.K., Klem A.I. Numerical simulation of the adaptive control system of the composite main mirror of a large-size space telescope. // Optika Atmosfery i Okeana. 2019. V. 32. No. 04. P. 317–323 [in Russian].
Copy the reference to clipboard
Abstract:

Currently, the scientific community is increasingly in demand for large-sized telescopes, which include the developed international project of the Millimetron space telescope with a composite main mirror diameter of ten meters. Creating an effective space telescope is associated with solving the problem of ensuring the high quality of observational information received by the telescope. The successful solution of this problem is largely determined by the task of ensuring high fidelity and maintaining the shape of the composite main telescope mirror (RMS 1 x 10-5 m [1, 3]) which can be solved using the adaptive control system of the space telescope. The article describes the developed mathematical model of the adaptive control system of the composite main telescope mirror, similar in characteristics to the Millimetron project, and presents the results of numerical simulation of the adaptive control system taking into account the limitations of the hardware and software implementation. According to the results of the simulation, an estimate was made of the error in maintaining the shape of the composite main mirror, confirming the applicability of the developed mathematical model.

Keywords:

space telescope, the composite primary mirror, multi-axis servodrives, the adaptive control system

References:

1.  Rossijskaya kosmicheskaya observatoriya «Millimetron»: sajt FGBUN Fizicheskogo Instituta im. P.N. Lebedeva RAN, Astrokosmicheskij tsentr. URL: http:// millimetron.ru/index.php/ru/ (data obrashcheniya: 15.01.2018).
   2. Kardashev N.S., Novikov I.D., Lukash V.N., Pilipenko S.V., Miheeva E.V., Bisikalo D.V., Vibe D.Z., Doroshkevich A.G., Zasov A.V., Zinchenko I.I., Ivanov P.B., Kostenko V.I., Larchenkova T.I., Lihachev S.F., Malov I.F., Malofeev V.M., Pozanenko A.S., Smirnov A.V., Sobolev A.M., Cherepashchuk A.M., Shchekinov Yu.A. Obzor nauchnyh zadach dlya observatorii Millimetron // Uspekhi fiz. nauk. 2014. V. 184, N 12. PС. 1319–1352. DOI: 10.3367/UFNr.0184.201412с.1319; Kardashev N.S., Novikov I.D., Lukash V.N., Pilipenko S.V., Mikheeva E.V., Bisikalo D.V., Wiebe D.Z., Dоroshkevich А.G., Zasov А.V., Zinchenkо I.I., Ivanov P.B., Kоstenkо V.I., Lаrchenkova Т.I., Likhachev S.F., Маlov I.F., Маlofeev V.М., Pozanenkо А.S., Smirnov А.V., Sоbolev А.М., Cherepashchuk А.М., Shchekinov Yu.A. Review of scientific topics for the Millimetron space observatory // Phys. Usp. 2014. V. 57, N 12. P. 1199–1228. DOI: 10.3367/UFNe.0184.201412c.1319.
   3. Sayapin S.N., Artemenko YU.N., Myshonkova N.V. Problemy pretsizionnosti kriogennogo kosmicheskogo teleskopa observatorii «Millimetron» // Vestn. MGTU. Ser. Estestv. nauki. 2014. N 2. P. 50–76.
   4. Sychev V.V., Klem A.I. Adaptation problems in the space telescope of the Millimetron observatory // Atmos. Ocean. Opt. 2017. V. 30, N 4. P. 389–398. DOI: 10.1134/S1024856017040121.
   5. Sychev V.V., Klem A.I. Algorithm for Controlling a Multielement Mirror using the Millimetron Space Telescope as an Example // Atmos. Ocean. Opt. 2018. V. 31, N 6. P. 667–675. DOI: 10.1134/S1024856018060155.
   6. Sychev V.V., Klem A.I. Metrological Control of the Spatial Positions of Elements of the Millimetron Telescope Primary Mirror // Atmos. Ocean. Opt. 2018. V. 31, N 6. P. 676–681. DOI: 10.1134/S1024856018060167.
   7. Samygina E.K., Rassudov L.N., Balkovoi A.P. Comparison of linear position and velocity control strategies for a direct servodrive // 25th Intern. Workshop on Electric Drives: Optimization in Control of Electric Drives. Moscow. 2018. P. 1–5. DOI: 10.1109/IWED.2018.8321382.
   8. Fedorchuk S.D., Arhipov M.Yu. Voprosy obespecheniya tochnosti konstruktsii kosmicheskogo radioteleskopa proekta «Radioastron» // Kosm. issled. 2014. V. 52, N 5. P. 415. DOI: 10.7868/S0023420614050057.
   9. Hongwei Fang, Changliang Xia, Zhengwei Chen, Xile Wei. Position servo control of brushless DC motor based on the second discrete filter // IEEE Intern. Conf. on Robotics and Biomimetics. Sanya. 2007. P. 1838–1842. DOI: 10.1109/ROBIO.2007.4522446.
10. Biagiotti L., Melchiorri C., Zanasi R. Dynamic Filters for Online Planning Optimal Trajectories // Motion Control Convengo Nazionale ANIPLA. Milano. 2010.
11. Guarino Lo Bianco C., Ghilardelli F. A Discrete-Time Filter for the Generation of Signals With Asymmetric and Variable Bounds on Velocity, Acceleration, and Jerk // IEEE Transactions on Industrial Electronics. 2014. V. 61, N 8. Р. 4115–4125. DOI: 10.1109/TIE.2013.2284135.
12. Samygina E.K. Enhancement of Servodrive Control System for Exact Tracking in the Extended Speed Range // X Intern. Conf. on Electrical Power Drive Systems. Novochrekassk. 2018. Р. 123–126. DOI: 10.1109/ICEPDS.2018.8571515.
13. Wang J., Wu J., Gan C., Sun Q. Comparative study of flux-weakening control methods for PMSM drive over wide speed range // 19th Intern. Conf. on Electrical Machines and Systems. Chiba, 2016. P. 1–6.
14. Rassudov L.N., Balkovoi A.P. Dynamic model exact tracking control of a permanent magnet synchronous motor // Intern. Siberian Conf. on Control and Communications. Omsk. 2015. P. 1–4. DOI: 10.1109/SIBCON.2015.7147187.
15. Sheikholeslami C., Goers J., Kramer B. Modern motion control strategies obtain consistent and better performance in uncertain conditions // ACS Motion Control. 2010. P. 1–8.
16. Böcker J., Beineke S., Bähr A. On the Control Bandwidth of Servo Drives // 13th Europ. Conf. on Power Electronics and Applications. Barcelona. 2009. P. 1–10.
17. Torque motor (direct drive motor): Technical information // HIWIN Motion Control and System Technology. URL: www.hiwin.com/pdf/torque_motor_rotary_ tables.pdf (last access: 15.01.2018).
18. Sokol'skij M.N. Dopuski i kachestvo opticheskogo izobrazheniya. L.: Mashinostroenie, 1989. 221 p.
 

Back