Vol. 32, issue 02, article # 8

Gribova E. Z., Losev S. E. The influence of the inertia of aerosol particles on the formation of multistream when moving in a turbulent flow. // Optika Atmosfery i Okeana. 2019. V. 32. No. 02. P. 147-150. DOI: 10.15372/AOO20190208 [in Russian].
Copy the reference to clipboard

Abstract:

We describe diffusion processes when aerosol particles are moving in the atmosphere. The impact of particles' inertia and diffusion coefficient on multistream formation was determined via the numerical solution of the Fokker–Planck equation. The simulation has been performed within the certain range of parameters, considering turbulent diffusion effects in real atmospheric conditions. The results of the study may be useful in interpreting aerosol optical sensing data.

Keywords:

turbulent diffusion, aerosol, Lagrange and Euler statistics, jacobian, multistream

References:

    1.    Abdullaev S.F., Shukurov T., Marupov R., Nazarov B.I. Issledovanie prob pochv i pylevogo aehrozolya metodom IK-spektroskopii // Optika atmosf. i okeana. 2013. V. 26, N 2. P. 166–171.
   2. Svarovskaya L.I., Yashchenko I.G., Altunina L.K. Adaptivnaya sistema monitoringa dlya ocenki masshtaba zagryazneniya territorii predpriyatij neftegazovogo kompleksa // Optika atmosf. i okeana. 2017. V. 30, N 2. P. 177–183.
   3. Naats I.E. Obratnye zadachi svetorasseyaniya aehrozol'nymi sistemami, vzaimodejstvuyushchimi s fizicheskimi polyami // Optika atmosf. i okeana. 1989. V. 2, N 10. P. 1107–1112.
   4. Klyatskin V.I., Saichev A.I. K statisticheskoj teorii diffuzii plavuchej primesi v sluchajnom pole skorosti // ZHETF. 1997. V. 111, iss. 4. P. 1297–1313.
   5. Saichev A.I., Woyczynski W.A. Probability distributions of passive tracers in randomly moving media // Stochastic Models in Geosystems / S.A. Molchanov, W.A. Woyczynski (eds.). New York: Springer-Verlag, 1997. P. 359–399.
   6. Maxey M.R. The gravitational settling of aerosol particles in homogeneous turbulence and random flow fields // J. Fluid Mech. 1987. V. 174. P. 441–465.
   7. Mazzino A. Two-dimensional turbulent convection // Phys. Fluids. 2017. V. 29, iss 11. P. 111102.
   8. Cvetkovic V., Fiori A., Dagan G. Tracer travel and residence time distributions in highly heterogeneous aquifers: Coupled effect of flow variability and mass transfer // J. Hydrol. 2016. V. 543. P. 101–108.
   9. Kurochkin V.E., Shhrfarets B.P., Sharfarets E.B. Obzor matematicheskih modelej, opisyvayushchih protsess transporta primesej i odinochnyh chastits v potoke zhidkosti // Nauch. priborostroenieprimesi v sluchajnom pole skorosti // ZHETF. 2015. V. 25, N 4. P. 36–42.
10. Rampf C., Frisch U. Shell-crossing in quasi-one-dimensional flow // MNRAS. 2017. V. 471. P. 671.
11. Gurbatov S.N., Malahov A.N., Saichev A.I. Nelinejnye sluchajnye volny v sredah bez dispersii. M.: Nauka, 1990. 216 p.
12. Gribova E.Z. Diffuziya inertnyh chastits v turbulentnoj vyazkoj srede // Izv. vuzov. Radiofizika. 2003. V. 46, N 2. P. 162–166.
13. Samarskij A.A., Gulin A.V. Chislennye metody. M.: Nauka, 1989. 432 p.
14. Csanady G.T. Turbulent diffusion in the environment. Dordrecht, Boston: D. Reidel Publ. Comp., 1980. 248 p.